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SUMMARY

The work consists of two major topics: subset selection and multi-criteria dimensionality re-
duction with an application to fairness. Subset selection can be applied to a classical problem
Optimal Designn statistics and many others in machine learning including diverse sampling.

Our first contribution is to show that approximability of many criteria for subset selection
can be obtained by novel polynomial-time sampling algorithms, improving upon best previous
approximation ratios in the literature. The results apply to several generalizations of the problem,
many of which are novel. We also show that tHeoptimal criterion isNP-hard and that the
best-known approximation fdr-optimal criterion is tight up to the natural convex relaxation.

One of the most common heuristics used in practice to sdlemd D-optimal criteria is the
local search heuristic, also known as the Fedorov’'s exchange method [Fed72]. This is due to
its simplicity and its empirical performance [CN80, MN94, ADTO07]. However, despite its wide
usage, no theoretical bound has been proven for this algorithm. We bridge this gap and prove
approximation guarantees for the local search algorithms f@nd D-optimal criteria.

This thesis also extends the arguably most commonly used dimensionality reduction technique,
Principal Component Analysis (PCA), to satisfy a fairness criterion of choice. We model an ad-
ditional fairness constraint asulti-criteria dimensionality reductiowhere we are given multiple
objectives that need to be optimized simultaneously. Our model of multi-criteria dimensionality
reduction captures several fairness criteria for dimensionality reduction motivated from economic
literature. Our technical contribution is to prove new low-rank properties of extreme point solutions
to semi-definite programs, which gives theoretical performance to our algorithms for multi-criteria
dimensionality reduction. Finally, we perform experiments on real-world datasets indicating the
effectiveness of the algorithms and demonstrating empirical scalability of our proposed implemen-

tations in practice.
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CHAPTER 1
INTRODUCTION

This thesis composes of two topics: subset selection and multi-criteria dimensionality reduction.
Each topic outlines the introduction which includes the problem formulation and motivation, pre-

vious and related work, summary of contribution, and future directions.

1.1 Diverse Subset Selection

1.1.1 Introduction

Choosing a diverse representative subset of items from a given large set arises in many settings such
as feature selection [BMI13], sensor placement [JB09], matrix sparsification [BSS12a, SS11], and
column subset selection in numerical linear algebra [AB13]. In statistics, this subset selection prob-
lem captures a classical problédptimal Desigrin statistics, also known as design of experiments
[Fed72, Puk06]. Its real-world applications include efficient design of science experiments and
CPU processors [WYS17], and material design [WUSK18]. In order to motivate the mathematical
formulation of this problem, we first outline the motivation from the optimal design problem. We

later present several applications of the mathematical formulation in the related work section.

Motivation and Problem Formulation from Optimal Design. In many settings of supervised
learning, obtaining labels is costly, but analysts have an ability choose from the pool of datapoints
from which labels are obtained, also known as an active learning setting. The probdgrtmnadl
designis to choose the best smaller set of datapoints to obtain labels to maximize the accuracy
and confidence of the model that learns from those labelled datapoints. The standard form of

optimal design concerns linear regression model, which is arguably the most fundamental concept



in supervised machine learning.

Optimal design can be defined mathematically as follows. t.ets, ..., v, € R? be given
unlabelled datapoints. We assume a linear regression model: there exists an unknown regression
coefficient vectorx* € R? such that, for any € [n], the labely; received from the datapoint
satisfies

yi=vi X 41

wherern; is a random i.i.d. Gaussian noise. Our goal of optimal design is to approxxkhatéh
least amount of error. We are allowed to choose at rhasdtthe design point$ C [n] to observe
y; = v; - x* +n; for eachi € S.

Suppose we have picked a subSet [n| of sizek. Let Vg be ad-by-k matrix whose columns
arev;’s, i € S andygs be the column vector af;’s, i € S. The best unbiased estimatofor x* is

the least square error estimator:

x = argmin|ys — Vg x||3

x€ER4

which has a closed-form solution

)A( = (stsT)il Z Y;U;

icS
Supposey;'s are i.i.d. Gaussian noise with ~ N (0, ¢), thenx—x* is distributed ag-dimensional
GaussianN (0, (VsV4 )~!). The matrix$ = (VsV4 )~! characterizes the error of the estimate,
and thus the goal is to minimizes. Multiple criteria are proposed to minimi2e. Some of the
common ones arg-, D-,andE-optimal designs, whose objectives are to minimizg, det(X), Apnax(2) =
|1 X]|spec respectively. Therefore, optimal design can be stated as a discrete optimization problem:

min f ((VsVs)™) (1.1)

SCnl,IS|=k



for a given criterionf of interest.
Similarly to variants of the objectives, one may generalize to obtain variants of constraints
beyond the cardinality constraift| = k. For example, each datapoints belong to an experi-
ment in one ofn laboratories, and each laboratory has its own size budg@&his ispartitioning
constraint wherewv;’s are partitioned inton sets, each of which has its own cardinality constraint.
Though optimal design is motivated from statistics, the optimization (1.1) is general enough to
capture many problems in other areas including in graph and network design, welfare economy,

and diversity. We provide more details in the related work section.

Previous results. It is known that optimal design fob, E criteria is NP-hard [CMI09]. As a

result, the work focuses on efficient approximation algorithms, both randomized and determinis-
tic, for solving optimal design. Previous approaches to optimal design in statistics have no strong
theoretical guarantees (only guarantee with approximation ratio dependindAmBl3] exists).

Existing common approaches studied in theory and used practice include local search heuristics,
such as Federov exchange [Fed+55], and approximate design which solves the continuous relax-
ation of the problem and uses heuristics rounding. Recently, a new perspective to optimal design
problem through a more sophisticated randomized rounding algorithm gave a reasonable approxi-

mation ratio guarantee within a polynomial running time [WYS17, ALSW17a].

1.1.2 OtherApplicationsof SubseSelectiomandRelated Work

As mentioned earlier, subset selection not only applies to optimal design, but also many other

problems. This section lists some of those applications and related topics in some details.

Welfare economics of indivisible goods. There are indivisible items to be distributed among
d individuals, and the utility of iter to persony is p; ;. The utility u; of personj is the sum of
utilities of items person receives. One criteria to distribute items is to maximize the project of

u;’s, as known as Nash social welfare [KN79]. The other is to maximize the minimuryisofalso
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known as Santa Claus problem [BS06]. Both Nash social welfare and Santa Claus problems are
special cases ab- and E-optimal designs with partitioning constraints, where each item is one

partition containingl vectors in each of thé axes, and the budget for each partition is one.

Graph sparsification. Given a graplG = (V, ), graph sparsification is the problem of finding

a subsetS5 C F of size at mosk which retains the values of all graph cuts [BSS12a, SS11]. This
is closely related tdZ-optimal design where one wants to maximize the minimum eigenvalue of
the sum of rank-1 matricesv,”, A\uin (Zies v, ) To relateE-optimal to graph sparsification,
one can define an instance Bfoptimal with input vectors as;;, {i,j} € E. We note that there
are two stark differences of two problems: we requinaveightedselection of edges i-optimal

design, and that graph sparsification requires two-sided bound of eigenval(@:sfegfviviT )

Network design. Similar to graph sparsification, we are given a gréph- (V, E') which cor-
responds to an instance of an optimal design problem with input vectars @ We want to

pick a subset of edges C F so that the subgrapH = (V, F') is well-connected. To maximize

the connectivity, one measureaffective resistancgsBS08, SS11], a notion of connectivity in

the middle between the two notions of edge connectivity and shortest path distance. The effective
resistance in an electric circuit corresponds to theptimal objective [GBS08]. There is also
another notion of connectivity, which is to maximize the number of spanning tree in the subgraph
H (see [LPYZ19] and references in the work for other applications). This notion corresponds to
maximizing the determinant of the covariance matrix of selected vector, i.&-tatimal design

problem.

Diversity sampling. Intuitively, the analyst in the optimal design setting seeks to find a small set
of datapoints that spreads over a wide region of space in order to maximize learning over the entire
space. Optimal design naturally gives rise to a notion of diversity sampling, where one seeks to

maximize the diversity of a smaller set from a given pool of items. Diversity sampling has many



Table 1.1: Summary of approximation ratios of optimal design of previous work and our work.
Cells with an asterisk * indicates our results that improve the previous ones. No integrality gap
result exists before our work.

Previous vork Our work Lower
Problems
bound
By relax-| Combina- | By relax-| Combina- | Integrality | (for general
ation torial ation torial gaps k,d)
A-optimal, | N/A e k N/A e 1 + ¢ for
k close tod [NST19* [NST19* some small
c [NST19*
A-optimal, |1 + ¢ for | =05 1 + &1 + ¢€|1+e¢ for
E>>d k>Q(4) for k >|for & >|k > Q(9)
o1 10) o) | memt
[NST19* [MSTX19]*
D-optimal, |1 + ¢ | =94 1 + &|1+¢ for|NA 2=
k>>d for k > for k >|k > Q(4) [ﬁmog]
Q<§ +h:2;> Q<4+1_> [MSTX19]*
[NST19
E-optimal, | 1 + ¢, for | N/A N/A N/A 1+ ¢ for| (2)7m
k>>d k>Q(4) k> Q(£) | [CMI09]
[NST19*

connections with machine learning, such as determinantal point processes (DPPs) [KT+12] and

fair representation of the data in machine learning [CDKV16].

1.1.3 Summaryof Contributions

The work in this direction consists of two papers: proportional volume sampling with Mohit Singh
and Aleksandar Nikolov [NST19] and combinatorial algorithms for optimal design with Mohit
Singh, Vivek Madan, and Weijun Xie [MSTX19]. Results from both papers are summarized in
Table 1. The first work [NST19] focuses @aoptimal design, yet we also show its applicability

to D-design and integrality gap &-design. The second [MSTX19] shows approximation factors
for A- and D-optimal design problems. The bound fbrdesign is better thar-design, and is

the curerntly best known. The integrality gap in Table 1 refers to the worst-case ratio between



optimum of the relaxation and (1.1), where the relaxation refers to relaxing the space of solution

S Cn],|S|=kin(1.1)byr e R", 1 >m>0,>."  m = k and replacing/s with >_"" | mv;v, .

Proportional volume sampling. To solve the optimal design problem, [NST19] first solves the
natural relaxation of optimal design, then use the solution of the relaxation to define a novel dis-
tribution calledproportional volume samplingSampling from this distribution provably obtained

the best approximation ratio fé-optimal design and best-known ratio fdroptimal design for

k >> d, and thek-approximation for anyt > d. [NST19] does not improve approximation
guarantee or-optimal, but shows a tight integrality gap result which implies that any round-
ing algorithm based on natural relaxation cannot improve upon the previous work. Additionally,

[NST19] also shows integrality gap and NP-hardnesg-oiptimal design.

Combinatorial algorithms. In [MSTX19], we give the first approximation guarantees which is
independent of. for optimal design with combinatorial algorithms, i.e. algorithms that do not rely
on solving the convex relaxation of optimal designs. The approximation ratio provéndptimal

also is the best proven in the literature. This work gives theorectical underpinning of known simple
heuristics [Fed+55] which are observed to work well in practice. The heuristics also avoid solving
the convex relaxation, which in practice is observed to be the bottleneck compared to the existing

rounding schemes [ALSW17al].

1.2 Fair Dimensionality Reduction

1.2.1 Introduction

Fairness in machine learning is a recent growing area in computer science. There are many in-
stances of machine learning algorithms’ outputs that are perceived as biased or unfair by users.
For example, Google Photos returns queries for CEOs with images overwhelmingly male and

white [KMM15]; record advertisements with higher frequency than searches white names [Swe13];



facial recognition has wildly different accuracy for white men than dark-skinned women [BG18];
and recidivism prediction software labels low-risk African Americans as high-risk at higher rates
than low-risk white people [ALMK18].

There are many speculations on the source of bias. The past literature focuses on either bias
in training data or in the algorithms (see a survey, [CR18], for example). We (Jamie Morgenstern,
Samira Samadi, Mohit Singh, and Santosh Vempala, and 1) discover another source of bias: in
the data processing [Sam+18]. Using one of the most common prepossessing algorithm PCA
(Principle Component Analysis, [Pea01, Jol86, Hot33, RSA99, IP91]), we show the gap of PCAs
performance between majority and minority groups in real datasets. This gap persists even after
reweighting the groups to have equal weights.

[Sam+18] and [Tan+19] proposefair dimensionality reductiomproblem, which seeks to re-

solve the bias found. The problem can stated as follows.

Definition 1.2.1. (Fair dimensionality reductionGivenm data points irR™ with subgroupsi and

B, thefair PCA problem with social welfare objectivgis to find low-rank datd/ by optimizing

S
|A]

1

A—Uyul?
H AHF"B’

min f (

IB - Usl%) (1.2)
UerRmxn, ranku)<d

wherelU 4 andUpg are matrices with rows corresponding to rowdofor groupsA and B respec-

tively.

The choice off depends on the context. One natural choice is tgf lee the max of two
reconstruction errors, which equalizes the error to both groups. Also, the problem can be naturally

generalized to more than two groups whéims partitioned intat parts andf hask arguments.

1.2.2 Related Work

This line of work is new, and therefore has minimal related work comparable to our work. How-

ever, related work that are helpful in developing our algorithms are listed in Summary of Contri-
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bution.

1.2.3 Summaryof Contribution

Both [Sam+18] and [Tan+19] develop algorithms for approximately soltangdimensionality

reductionfor a wide class of functiong. We summarize the algorithms and results as follows.

Convex relaxation and LP rounding.

[Sam+18] solves the convex relaxation of fair dimensionality reduction problerfi(for, ug) =
max{aus + «, bup + [} for real constants, b, o, 3. The technique relies on solving the convex
relaxation of the problem, defining a polytope whose objective are guarantee to perform as good as
the optimal, then rounding the fractional solution to the extreme point of that polytope. Using the
property of duals of an LP, the solution is guaranteed to perform as good as optimum, and violates

the rank constraint by at most one dimension.

Convex relaxation and SDP rounding.

[Tan+19] generalizes and improves the theorectical guarantee of [Sam+18] to solvirfgf@any
k groups that is concave and decreasing in each group’s reconstruction error. The technique also
replies on convex relaxation, and then defining a semi-definite cone instead of a polytope than
maintains the objective value. We build on the low-rank property of extreme solution of an SDP
by [Pat98] and show that the solution is guaranteed to perform as good as optimum, and violates
the rank constraint by at mog/% + i — %j dimension. In particular, in the case of two groups,
we can solve the problem exactly.

[Tan+19] also generalizes iterative LP rounding [LRS11] to iterative SDP rounding and applies
the result to fair dimensionality reduction. Additionally, [Tan+19] discusses some complexity
results including NP-hardness and integrality gap of the convex relaxation formulation for the

dimensionality reduction problem.



1.2.4 Fast implementations

Running SDP becomes slow when the number of original dimensiomgeases beyond moderate
sizes (e.gn ~ 50 — 100). We consider two alternative algorithms to solving SDP: multiplicative
weight update (MW) and Frank Wolfe (FW).

MW has been considered and analyzed in [Sam+18] for solving this SDP. By the regret analysis
from online learning theory [AHK12], the runtime of MW (Q(%k) iterations of standard PCA
for k£ groups and for a given desired error bound 0. In practice, MW can be tuned to obtain a
runtime ofO(1) iterations of standard PCA, showing that incorporating fairness to certain farness
criteria to which MW applies costs only a constant runtime overhead. In this thesis, we obtain
MW through convex duality, obtaining a primal-daual algorithm which gives a duality gap and
hence a stopping condition with an error bound. We expand the experiments from [Sam+18] to
large datasets to demonstrate effectiveness of MW. We also propose FW which performs better for
differentiable fairness objective than MW. Both algorithms can be tuned by using a more aggressive
learning rate, giving heuristics to solving SDP that are much faster than a standard SDP solver in

practice.

1.2.5 Experiments

We run our algorithms on two real datasets: Default Credit data [YLO9] and Adult Income data
[UC ]. We evaluate the performance of PCA solutions based on two fairness criteria motivated
from welfare economics. Our results show that our algorithms are significantly better based on
both criteria of fairness than standard PCA. The experiment details can be found in Section 5.8.
We also show how two heuristics, MW and FW, scale to a large dataset in practice on several
fairness criteria on multiple groups. We show their efficiency on Census data [AA], which have
more than 600,000 datapoints partitioned into 16 groups and lie in thousands of dimensions. The

details can be found in Section 5.9. The experiments and heuristics are publicly available at:



https://github.com/SDPforAll/multiCriteriaDimReduction.

1.3 Future Directions

1.3.1 Generalized.inear Models

Generalized Linear Models (GLM) generalizes linear regression model where the mean of the
response is not a linear function of features' x* but another function, callesheanfunction .,
that depends onx*. The function that relates the mearback tov,' x* is called dink function,

denoted byy(x). An example of GLM is logistics regression, where the meands — and

—ul x*

14+e i

the link function isg(i) = log (ﬁ)

Optimal design for GLM has been studied; e.g. see [SY12]. The optimal design objective is

i VWi Vg )71 1.3
schiff ] (VW) 49
wherelV,- is a diagonal matrix with entries; for: = 1,...,n are weighting on each example

The challenge is that the weighting depends not only on the model (mean and link function) and
input vectory; which are constants as an input to the problem, but alse*amhich is unknown.

If x* was known, then one can scale the vector \/X_ffui and apply the standard optimal design
algorithm. This gives rise to several ways to optimize (1.3).

One is to assume a prior, such as Gaussian centered at mean ze&ro,Tdns is also known
as Bayesian experimental design, and reduces to optimal desigi,wégularizer. We treat this
topic in more details, including giving our guarantee, in Section 3.9.

One may also assume some boundary conditions*pg.g. lying inside a box— M/, M]? for
some realM > 0. Then, one can solve (1.3) as a robust optimization: optimize (1.3) over the
worst-casex™ in this boundary ok*.

Another way is to estimate* and use the estimate to approximately solve (1.3). Then, use

the responses from the design to get a better estimaté&. oT his is similar to alternative mini-
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mization where one tries to minimize (1.3) with respect to subSe#sd then toc*, and continue
alternatively.

Besides Bayesian optimal design which reduces to an optimal design with regularizer, it is
unknown if good approximation exists, and whether our approach in this thesis can lead to any

theoretical results. This remains an open direction in the future.

1.3.2 Ridge Regression

We showed that our algorithm can solve an objective motivated from expected square loss of ridge
regression (see Inequality (3.47) and its derivation). However, the objective is motivated from
an assumption on the regularizer parametand is an upper bound of the true square loss, not
exact. It remains an open question whether an approximation algorithm exists for gemnaral

minimizing the square loss of ridge regression directly.

1.3.3 Other Applications

To show approximability oA-optimal design, we show an efficient implementation of proportional
volume sampling and its generalization for a large class of parameters (Theorem 3.6.2 and other
results in Section 3.6 in general, and regularized version in Section 3.9.7). It remains an open

guestion what other problems the efficiency of these classes of sampling may be applicable to.
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CHAPTER 2
PRELIMINARIES

To show approximation results and lower bounds of approximations for diverse subset selections
problems, we utilize a technique of relaxation and duality. Here we list the applications of relax-
ation sand integrality gaps td- and D-optimal design problems. In general, it is crucial that the
relaxations are convex problems to allow for efficient solvability of the relaxations. It is known
that relaxationsA- and D-optimal design are convex ([BV04]). We note that though the objective

of D-optimal is not concave, its logarithm is. Hence, the relaxation is still efficiently solvable.

For details of convex duality in general, we refer readers to [BV04].

2.1 Convex Relaxation and its Dual oA-optimal Design

We first consider the convex relaxation for theoptimal design problem given below for the set-
tings without and with repetitions. The difference for without repetition is that there is no upper
bound on the value aof; (the same is true to other optimal design criteria). This relaxation is clas-
-1

sical, and already appears in, e.g. [Cheb2]. It is easy to see that the obte@jézl :z;ivivf)
is convex ([BV04], section 7.5).
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min tr <Z xww?) min tr (Z $,»UZ-U1T> (2.2)
i=1 i=1

i=1 i=1

0<uz; Vié€ln] 0<xz; <1 Vié€]ln]

2.3

Let us denote the optimal value of (2.1)—(2.3) ®y. By plugging in the indicator vector of
an optimal integral solution far, we see thaCP < OPT, where OPT denotes the value of the

optimal solution. We also present the dual foroptimal design in Figure 2.1c
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2.2 Convex Relaxation oD-optimal Design

We describe the relaxation @b-design with repetitions in Figure 2.2c below. Let OPT denote
the be the common optimum value dD{REL) and its dual OD-ReEL-DUAL). Let I* denote the
indices of the vector in the optimal solution andd€t = det (Zieﬁ viv;)é be its objective. Then

we have thatyﬁ]'? > log ¢P by plugging in the indicator vector of an optimal integral solutionafor

to the relaxation. We also present the convex relaxation and its dual without repetition in Figure

2.3cC.

1 n -
i%%{é p log det (2} Ti0;V;
1=

@ sz <k
i=1
x; >0 i€[1,n]

. 1 k
LﬂGIIIRE y log det(Y') + M= 1
() | vemrdxd

p—v Yy >0 i€ [l,n]

Y =0

(c) Convex Relaxation and its Dual for ttie-DESIGN problem

2.3 Integrality Gaps

In this thesis, we usetegrality gapsto show tightness of approximation and to show approxi-
mation factor without solving the convex relaxation, as known as dual-fitting. We refer readers to
[Vaz13] for more examples and significance of integrality gaps, including more uses of dual-fitting

techniques in approximation algorithms.
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max logdet (Z TiVV; )
@ Z 5 <

[
in =1 Zu+=Sm—1
min ogdet(Y)—Fd,u—i-ali:1 ni
(b)

(c) Convex Relaxation and its Dual for tli&-DESIGN problem without repetitions

2.3.1 Tightnessof Approximations.

To show tightness of approximation, we show the lower bound of approximation by showing the
integrality gapsof relaxations. In particular, if the relaxation of a problem has integralitygamy
rounding method from the relaxation will achieve an approximation no better than fadtde use

this to show the tightness of relaxation Bfoptimal design and lower-bound of approximation of
A-optimal design in this thesis. We also show that the relaxation of Fair Dimensionality Reduction

is not tight through the existence of the gap.

2.3.2 Dual-Fitting

Convex relaxations have their corresponditugl problems. For most well-behaved convex prob-
lems, strong duality holds, i.e. the optimum of dual equals the primal optimum. Hence, one can
use the dual feasible (and not necessarily optimal) solutions to bound the primal optimum. Here
we give the primal and dual of relaxations &f and D-optimal designs problems, and note that

strong duality holds in both cases.
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2.4 Local Search and Greedy Algorithms

The local searchalgorithm to maximize an objectivé over setsS € P whereP is a given
collection of sets of the same size is the algorithm that starts with any initial feasible solution in
‘P. Then, in each step, it checks if there is any swap of an element to incfeaseto delete on
current element it and add another one such thfaincreases and the new set remain®in
Thegreedyalgorithm to maximize an objectiveéover setsS € P whereP is a given collection
of sets starts with any initial feasible solution / (usually an empty set). In each step, the
algorithm adds an element that increagdsy the highest amount. The algorithm stops when it
reaches a terminating condition to remain feasible. For example cibnsists of sets of size at
mostk, then one terminates when the set reachestsize
Local search and greedy algorithms are among the most basic combinatorial algorithms. They
do not necessarily have theoretical guarantees, yet sometimes the algorithms (or their modifica-
tions) do to some problems despite their simplicity. We refer readers to [Vaz13, CLRS09] for

examples of their applications in approximation algorithms.
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CHAPTER 3
SAMPLING-BASED APPROXIMATION ALGORITHM FOR SUBSET SELECTION

3.1 Introduction

Given a collection of vectors, a common problem is to select a subset of size: thatrepre-
sentsthe given vectors. To quantify the representability of the chosen set, typically one considers
spectral properties of certain natural matrices defined by the vectors. Such problems arise as ex-
perimental design ([Fed72, Puk06]) in statistics; feature selection ([BMI13]) and sensor placement
problems ([JB09]) in machine learning; matrix sparsification ([BSS12a, SS11]) and column sub-
set selection ([AB13]) in numerical linear algebra. In this work, we consider the optimization
problem of choosing the representative subset that aims to optimizé-tpgimality criterionin
experimental design.

Experimental design is a classical problem in statistics ([Puk06]) with recent applications in
machine learning ([JB09, WYS16]). Here the goal is to estimate an unknown vectorR?
via linear measurements of the fogn= v, w + 7; wherev; are possible experiments andis
assumed to be smalli.i.d. unbiased Gaussian error introduced in the measurement. Gigeof a set
linear measurements, the maximum likelihood estiniatd «w can be obtained via a least squares
computation. The error vectar—w has a Gaussian distribution with me&aand covariance matrix
(ZZ_GS viv;)fl. In the optimal experimental design problem the goal is to pick a cardinatist
S out of then vectors such that the measurement error is minimized. Minimality is measured
according to different criteria, which quantify the “size” of the covariance matrix. In this thesis,
we study the classicad-optimality criterion, which aims to minimize the average variance over
directions, or equivalently the trace of the covariance matrix, which is also the expectation of the

squared Euclidean norm of the error veator w.
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Table 3.1: Summary of approximation ratios 4foptimal results. We list the best applicable
previous work for comparison. The cells with asterisk * indicate that the ratios are tight with
matching integrality gap of the convex relaxation (2.1)-(2.3).

Problem Ouresult Previous wark
Casek =d d* n—d+ 1 (JAB13])

Asymptotick >> d d | logl/e d
without Repetition L+efork =0 (6 T ) e fork = (52) (ALSW17d)

Arbitrary k andd P ox

With Repetition k—d+1 n—d+1(AB13])
Asymptotick >> d d % d

With Repetition 1+e¢fork>d+ ¢ 1+ fork > Q(5) ([ALSW174d)
We letl denote the/xn matrix whose columns are the vectors. . ., v, andjn] = {1,...,n}.

For any setS C [n], we letVy denote thel x |S| submatrix ofl” whose columns correspond to
vectors indexed bys. Formally, in theA-optimal design problem our aim is to find a subset

of cardinality & that minimizes the trace dfVsVy )™ = (3,4 vivf)_l. We also consider the

A-optimal design problem with repetitions, where the chaSean be a multi-set, thus allowing a
vector to chosen more than once.

Apart from experimental design, the above formulation finds application in other areas such
as sensor placement in wireless networks ([JB09]), sparse least squares regression ([BDM11]),
feature selection fok-means clustering ([BMI13]), and matrix approximation ([AB13]). For ex-
ample, in matrix approximation ((HMO07, HM11, AB13]) givenix n matrix V', one aims to select
a setS of k such that the Frobenius norm of the Moore-Penrose pseudoinverse of the selected ma-
trix Vs is minimized. It is easy to observe that this objective equalsitoptimality criterion for

the vectors given by the columns Bt

3.1.1 Our Contriutionsand Results

Our main contribution is to introduce thpgoportional volume samplinglass of probability mea-

sures to obtain improved approximation algorithms for theptimal design problem. We obtain
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improved algorithms for the problem with and without repetitions in regimes wherelose tad

as well as in the asymptotic regime whére> d. The improvement is summarized in Table 3.1.
Let U, denote the collection of subsets|of of size exactlyt andi{/<; denote the subsets pf] of
size at most. We will consider distributions on sets ), as well ad/<; and state the following

definition more generally.

Definition 3.1.1. Let 1 be probability measure on setsify (or U/<). Then the proportional
volume sampling with measure picks a set.S € U, (or U<;) with probability proportional to

w(S) det(VsVyl).

Observe that whep is the uniform distribution anél < d then we obtain the standard volume
sampling where one picks a s&tproportional todet(VsVy ), or, equivalently, to the volume
of the parallelopiped spanned by the vectors indexed byolume sampling measure was first
introduced by [DRVWO06] for low-rank matrix matrix approximation (with optimal guarantee in
[DV06]) It has received much attention, and efficient algorithms are known for sampling from
it ((DR10, GS12]). More recently, efficient algorithms were obtained even vihend ([LIS17,
SX18]). We discuss the computational issues of sampling from proportional volume sampling in
Lemma 3.1.10 and Section 3.6.2.

Our first result shows that approximating tiAeoptimal design problem can be reduced to
finding distributions ord4;, (or U<;) that areapproximately independerttirst, we define the exact

formulation of approximate independence needed in our setting.

Definition 3.1.2. Given integers! < k < n and a vector: € [0, 1]" such thatl "z = k, we call a
measure: on sets irl4; (or U<;), a-approximated — 1, d)-wise independent with respecttaf

for any subset$’, R C [n| with |T'| = d — 1 and|R| = d, we have

PFSNM[T - S] < Oéﬁ
Prs . [RCS| — xR

wherez? := T[], ., z; forany L C [n]. We omit “with respect ta:" when the context is clear.
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Observe that if the measurecorresponds to picking each elemeimidependently with prob-

Prs~u[TCS] _

ability z;, thenPrS—[RCS] =
~uIRC

j—; However, this distribution has support on all sets and not just sets
in U, or U<y, so itis not allowed by the definition above.

Ouir first result reduces the search for approximation algorithmslfoptimal design to con-
struction of approximatéd — 1, d)-wise independent distributions. This result generalizes the
connection between volume sampling afteptimal design established in [AB13] to proportional
volume sampling, which allows us to exploit the power of the convex relaxation and get a signifi-

cantly improved approximation.

Theorem 3.1.3.Given integers! < k < n, suppose that for any a vectar< [0, 1]" such that
1Tz = k there exists a distributiop on sets in4;, (or U<;) that isa-approximate(d — 1, d)-wise
independent. Then the proportional volume sampling with measigiges ana-approximation

algorithm for theA-optimal design problem.

In the above theorem, we in fact only need an approximately independent distripdtiothe
optimal solutionz of the natural convex relaxation for the problem, which is given in (2.1)—(2.3).
The result also bounds the integrality gap of the convex relaxatian Gjheorem 3.1.3 is proved
in Section 3.2.

Theorem 3.1.3 reduces our aim to constructing distributions that have approximate d)-
independence. One way to construct such distribution is through a general clagsl-afore

distributions defined as follow(s).

Definition 3.1.4. We call a distributiorp, on, (or U<,) a hard-coredistribution with parameter

A€ R if p(S) oc A9 = [[,.4 Ai for each set indd, (or U<y).

Convex duality implies that hard-core distributions have the maximum entropy among all dis-
tributions which match the marginals pf([BV04]). Observe that, while. places non-zero prob-
ability on exponentially many sets, it is enough to spegifsuccinctly by describing. Hard-core

distributions over various structures including spanning trees ([GSS11]) or matchings ([Kah96,
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KahO0Q]) in a graph displagpproximate independenaad this has found use in combinatorics as
well as algorithm design. Following this theme, we show that certain hard core distributiéfis on
andU<, exhibit approximatéd — 1, d)-independence wheh = d and in the asymptotic regime

whenk >> d.

Theorem 3.1.5.Given integersl < k < n and a vector € [0, 1]" such thatl "z = k, there exists
a hard-core distributiory: on sets irt4,, that is d-approximate(d — 1, d)-wise independent when
k = d. Moreover, for any > 0, if k = Q (¢ + £ log 1), then there is a hard-core distribution
onl thatis(1+ ¢)-approximate(d — 1, d)-wise independent. Thus we obtaid-approximation
algorithm for the A-optimal design problem whel = d and (1 + ¢)-approximation algorithm

whenk = Q (¢ + L log?).

The above theorem relies on two natural hard-core distributions. In the first one, we consider

the hard-core distribution with parameter= z on sets iri/, and in the second we consider the

(1-¢)

hard-core distribution with paramet&r= 17(1731 (defined co-ordinate wise) on setsia;. We

prove the theorem in Section 3.3.

Our techniques also apply to theoptimal design problem with repetitions where we obtain
an even stronger result, described below. The main idea is to introduce multiple, possibly exponen-
tially many, copies of each vector, depending on the fractional solution, and then apply proportional

volume sampling to obtain the following result.

Theorem 3.1.6.Forall ¥ > dand0 < ¢ < 1, there is a(%m + €)-approximation algorithm
for the A-optimal design problem with repetitions. In particular, there i§lat- ¢)-approximation

whenk > d + <.

We remark that the integrality gap of the natural convex relaxation is at%g@g (see Sec-
tion 3.7.2) and thus the above theorem results in an exact characterization of the integrality gap
of the convex program (2.1)—(2.3), stated in the following corollary. The proof of Theorem 3.1.6

appears in Section 3.6.3.
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Corollary 3.1.7. For any integers: > d, the integrality gap of the convex progrg1)+2.3)for

the A-optimal design with repetitions is exacgy’;—ﬂ.

We also show thati-optimal design isNP-hard fork = d and moreover, hard to approximate

within a constant factor.

Theorem 3.1.8.There exists a constant> 1 such that thed-optimal design problem iNP-hard

to c-approximate whei = d.

The k£ < d case. The A-optimal design problem has a natural extension to choosing fewer than
d vectors: our objective in this case is to select a$et [n] of size k£ so that we minimize
Zle At where),, ..., A\, are thek largest eigenvalues of the matfix Vg . While this problem
no longer corresponds to minimizing the variance in an experimental design setting, we will abuse
terminology and still call it thed-optimal design problem. This is a natural formulation of the
geometric problem of picking a set of vectors which are as “spread out” as possibje..If, v,,
are the points in a dataset, we can see an optimal solution as a maximally diverse representative
sample of the dataset. Similar problems, but with a determinant objective, have been widely studied
in computational geometry, linear algebra, and machine learning: for example the largest volume
simplex problem, and the maximum subdeterminant problem (see [Nik15] for references to prior
work). [CMIQ9] also studied an analogous problem with the sum in the objective replaced by a
maximum (which extendg’-optimal design).

While our rounding extends easily to the< d regime, coming up with a convex relaxation

becomes less trivial. We do find such a relaxation and obtain the following result whose proof

appears in Section 3.5.1.

Theorem 3.1.9.There exists aoly(d, n)-time k-approximation algorithm for thed-optimal de-

sign problem whett < d.
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Integrality Gap. Experimental design problems come with many different objectives including
A, D, E, G, T, each corresponding to a different function of the covariance matrix of thewerror

w. A natural question is whether they all behave similarly in terms of approximation algorithms.
Indeed, recent results of [ALSW17a, ALSW17b] and [WYS16] give the- ¢)-approximation
algorithm in the asymptotic regimé;, > Q (%) andk > (d—j> for many of these variants.

In contrast, we show theptimal boundghat can be obtained via the standard convex relaxation
are different for different objectives. We show that for theoptimality criterion (in which we
minimize the largest eigenvalue of the covariance matrix) gettifigtae )-approximation with the
natural convex relaxation requirés= Q(E%), both with and without repetitions. This is in sharp
contrast to results we obtain here fdroptimality. Thus, different criteria behave differently in
terms of approximability. Our proof of the integrality gap (in Section 3.7.1) builds on a connection
to spectral graph theory and in particular on the Alon-Boppana bound ([Alo86, Nil91]). We prove
an Alon-Boppana style bound for the unnormalized Laplacian of not necessarily regular graphs

with a given average degree.

Computational Issues. While it is not clear whether sampling from proportional volume sam-
pling is possible under general assumptions (for example given a sampling oraclevierobtain

an efficient sampling algorithm whenis a hard-core distribution.

Lemma 3.1.10. There exists goly(d, n)-time algorithm that, given a matrid x n matrix V,
integerk < n, and a hard-core distribution on sets irt4,, (or U<;) with parameter\, efficiently

samples a set from the proportional volume measure defingd by

Whenk < d andy is a hard-core distribution, the proportional volume sampling can be im-
plemented by the standard volume sampling after scaling the vectors appropriatelyx\Whén
such a method does not suffice and we appeal to properties of hardcore distributions to obtain the
result. We also present an efficient implementation of Theorem 3.1.6 which runs in time polyno-

mial in log(1/¢). This requires more work since the basic description of the algorithm involves
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implementing proportional volume sampling on an exponentially-sized ground set. This is done in
Section 3.6.3.
We also outline efficient deterministic implementation of algorithms in Theorem 3.1.5 and

3.1.6 in Section 3.6.2 and 3.6.4.

3.1.2 Related Work

Experimental design is the problem of maximizing information obtained from selecting subsets of
experiments to perform, which is equivalent to minimizing the covariance r‘r‘(aiﬁigés Uw;)_1

We focus onA-optimality, one of the criteria that has been studied intensely. We restrict our
attention to approximation algorithms for these problems and refer the reader to [Puk06] for a
broad survey on experimental design.

[AB13] studied theA- and E-optimal design problems and analyzed various combinatorial
algorithms and algorithms based on volume sampling, and achieved approximatio@}ﬁﬁo
[WYS16] found connections between optimal design and matrix sparsification, and used these
connections to obtain @ + ¢)-approximation whert > % and also approximation algorithms
under certain technical assumptions. More recently, [ALSW17a, ALSW17b] obtaified a)-
approximation wheik = Q (e%) both with and without repetitions. We remark that their result also
applies to other criteria such asand D-optimality that aim to maximize the minimum eigenvalue,
and the geometric mean of the eigenvaluel vf ; v;v,", respectively. More generally, their result
applies to any objective function that satisfies certain regularity criteria.

Improved bounds foP-optimality were obtained by [SX18] who give amapproximation for
all k andd, and(1+¢)-approximation algorithm whel = Q(¢+ 4 log 1), with a weaker condition
of £ > %d if repetitions are allowed. Thé-optimality criterion whenk < d has also been
extensively studied. It captures maximum a-posteriori inference in constrained determinantal point
process models ([KT+12]), and also the maximum volume simplex problem. [Nik15], improving

on a long line of work, gave a-approximation. The problem has also been studied under more

24



general matroid constraints rather than cardinality constraints ([NS16, AG17, SV17]).

[CMI09] also studied several related problems in the< d regime, includingD- and E-
optimality. We are not aware of any prior work ehoptimality in this regime.

The criterion of E-optimality, whose objective is to maximize the minimum eigenvalue of
> viv;, is closely related to the problem of matrix sparsification ([BSS12a, SS11]) but incom-
parable. In matrix sparsification, we are allowed to weigh the selected vectors, but need to bound
both the largest and the smallest eigenvalue of the matrix we output.

The restricted invertibility principle was first proved in the work of [BT87], and was later
strengthened by [Ver01], [SS10], and [NY17]. Spielman and Srivastava gave a deterministic al-
gorithm to find the well-invertible submatrix whose existence is guaranteed by the theorem. Be-
sides its numerous applications in geometry (see [VerO1] and [Youl4]), the principle has also
found applications to differential privacy ([NTZ16]), and to approximation algorithms for discrep-
ancy ([NT15]).

Volume sampling [DRVWO06] where a sétis sampled with probability proportional tt (Vs V")
has been studied extensively and efficient algorithms were given by [DR10] and improved by [GS12].
The probability distribution is also calleddeterminantal point proceg®PP) and finds many ap-
plications in machine learning ([KT+12]). Recently, fast algorithms for volume sampling have
been considered in [DW17a, DW17b].

While NP-hardness is known for th®- and E-optimality criteria ((CMI09]), to the best of
our knowledge nd\P-hardness ford-optimality was known prior to our work. Proving such a

hardness result was stated as an open problem in [AB13].

Restricted Invertibility Principle for Harmonic Mean.  As an application of Theorem 3.1.9,
we prove a new restricted invertibility principle (RIP) ([BT87]) for the harmonic mean of singular
values. The RIP is a robust version of the elementary fact in linear algebra thet &d x n rank

r matrix, then it has an invertible submatiik for someS C [n] of sizer. The RIP shows that if
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V' has stable rank, then it has a well-invertible submatrix consisting(®fr) columns. Here the
stable rank ol is the ratio(||V||%5/||V||?), where]|| - |zs = +/tr(VV T) is the Hilbert-Schmidt,

or Frobenius, norm of’, and|| - || is the operator norm. The classical restricted invertibility princi-
ple ([BT87, Ver01, SS10]) shows that when the stable rank &f r, then there exists a subset of
its columnsS of sizek = Q(r) so that thek-th singular value o¥s is Q (||V||zs/+/m). [Nik15]
showed there exists a submatvix of £ columns ofl” so that the geometric mean its tbgingular
values is on the same order, even wiegquals the stable rank. We show an analogous result for
the harmonic mean whéehis slightly less tham. While this is implied by the classical restricted
invertibility principle, the dependence on parameters is better in our result for the harmonic mean.
For example, whek = (1 —¢)r, the harmonic mean of squared singular valuessodan be made

at leastQ) (¢||V||%5/m), while the tight restricted invertibility principle of Spielman and Srivas-
tava ([SS11]) would only give? in the place of. See Theorem 3.5.4 for the precise formulation

of our restricted invertibility principle.

3.1.3 Problem Variants

We discuss several generalization4dbptimal objectives and corresponding modifications to the
algorithms and our results in this chapter. We summarize this in Table 3.2. Hérd,) denote
the elementary symmetric polynomial of degfesf matrix M.

Our first variant is the case < d, where we generalizé-approximation whert = d to k-
approximation whett < d. The objective is modified accordingly Aselected vectors span only
in £ and notd dimensions. Details can be found in Section 3.5.1.

We generalized-optimal design objective to the generalized ratio objective, where its special
case also has been considered by [MS17]. We show that all approximation resditsptmmal
applies to this setting, with a better boundiorThis generalization includ€s-optimal design, and
hence proportional volume sampling also gives approximation algorithnig-figsign. Summary

of approximation results are in Table 3.3 in Section 3.5.3 which also includes details of this variant.
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Table 3.2: Summary of variants of objectives fboptimal design problems and their correspond-
ing modifications of algorithms and approximation guarantees

Variants Objecties Sampling distriltions | Modification of the Integrality
results gaps

Original ( (VeVd) ) oc u(S) det(VsVy ) | N/A ko

k<d B E(El ”C””?T) o 1(S)Ep(VsVy) k-approximation in-| &

2 B, stead ofd
Gener- B (Vv ) o (S Ey(VsVy) Replaced with [ in | —&—
. Ei(VsVy) H NYshs P k—l'+1

alized the bounds of

ratio

Ridge | tr ( (VsVi + /\I)_1> oc u(S) det(VsVd + M) | (1+ey)-approx | Not yet an-
wheree, = ¢ (same| alyzed
as original) and
€y — 0as\ — oo

Another variant isidge regressionwhich motivates the objective of-design with regularizer
term added. We show that the main result4sbptimal design, namely th@ + ¢)-approximation
without repetition for large:, generalizes to this setting and improves as the regularizer parameter
increases. We have not attempted to generalize other resultsptimal design in this chapter,
though we suspect that similar analyses can be done. We also have not attempted to check the
integrality gap in this setting. Details can be found in Section 3.9.

Finally, we note that each modified version can be implemented efficiently (including their

deterministic derandomization counterpart).

3.1.4 Organization

In this chapter, we first show the reductionfebptimal design problem to constructing an efficient
a-approximate(d — 1, d)-independent distributiop, i.e. Theorem 3.1.3, in Section 3.2. We
show d-approximation and asymptotically optimal approximation Asoptimal design without

repetition in Section 3.3. We show approximations result when repetitions are allowed in Section
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3.4. We discuss several generalizationsAadptimal design in Section 3.5. In Section 3.6, we
provide efficient randomized and deterministic derandomization of proportional volume sampling
with parametey, for any hard-core measure In Section 3.7, we show in integrality gaps results of

A- and E-optimal design. In Section 3.8, we prove APX-hardnesa-optimal design. In Section

3.9, we discusé-optimal design when afy-regularizer, also known as ridge regression, and show
that a modification of proportional volume sampling still acheives an approximation guarantee for

this problem.

3.2 Approximation via Near Independent Distributions

In this section, we prove Theorem 3.1.3 and givevaapproximation algorithm for thé-optimal
design problem given am-approximated — 1, d)-independent distributiop.

We first consider the convex relaxation for the problem given below for the settings without
and with repetitions. The relaxation is stated in Preliminaries at (2.1)—(2.3). Let us denote the
optimal value of (2.1)—(2.3) b¢P, and denote the value of the optimal solution by OPT. For this

section, we focus on the case when repetitions are not allowed.

3.2.1 Approximatelylndependent Distributions

Let us use the notation® = [Lics @i, Vs @ matrix of column vectors; € R¢ for i € S, and
Vs(x) a matrix of column vectorg/z;v; € R? for i € S. Lete(zy,...,x,) be the degreé
elementary symmetric polynomial in the variables. .., z,, i.e. ex(z1,...,2,) = ng,fk x5,
By convention,ey(z) = 1 for any x. For any positive semidefinite x n matrix M, we define
Ei(M) to beeg(A,...,\,), where\(M) = (Aq,...,A,) is the vector of eigenvalues dff.
Notice thatE; (M) = tr(M) andE,,(M) = det(M).

To prove Theorem 3.1.3, we give the following algorittdnwhich is a general framework to
sampleS to solve theA-optimal design problem.

We first prove the following lemma which is needed for proving Theorem 3.1.3.
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Algorithm 3.1 The proportional volume sampling algorithm

1: Given an inpu’ = [vy, ..., v,] wherev; € R?, k a positive integer, and measyren sets in
U, (or Uy).

2: Solve convex relaxatioiP to get a fractional solutiom € R"} with " | z; = k.

3: Sample sef (from/<, orif,) wherePr [S = S] oc u(S) det(VsVy ) foranyS € Uy (ortdy,).

> u(S) may be defined using the solutian
4: OutputS (If |S| < k, addk — |S| arbitrary vectors ta first).

Lemma 3.2.1.LetT C [n] be of size no more thah Then
det(Vy(z) 'Vp(z)) = 27 det (V4 Vo)

Proof. The statement is true by multilinearity of the determinant and the exact formulafoy " V()

as follows. The matri¥/;(z) "V (x) has(i, j) entry

(VT(x)TVT(fL’))Z,J — VT - JT0; = \JTT5; - v

for each pair, j € [|T']]. By the multilinearity of the determinant, we can take the factar out
from each rowi of V-(x) "V (z) and the factor,/z; out from each column of Vi (z) Vi (x).

This gives

det(Vr(z) "Vr(x) = [ vai [ va;det(Vy Vi) = a7 det(Vy! Vi)

i€(|T1] JElT)
O
We also need the following identity, which is well-known and extends the Cauchy-Binet for-

mula for the determinant to the functiofs.

Ey(VVT) = B (VTV) = det(Vy V). (3.1)
Sely,
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The identity (3.1) appeared in [MS17] and, specifically fo= d — 1, as Lemma 3.8 in [AB13].

Now we are ready to prove Theorem 3.1.3.

Proof of Theorem 3.1.3 Let i/ denote the sampling distribution oVt whereld = U, or Uy,
with probability of samplings € U proportional tq:(S) det(Vs V4 ). Becauser (Zie[n] xiviv;r> T
CP < OPT, itis enough to show that

o -1
S]E |:tr (Z Uﬂj?) ] < atr (Z xiviv; . (3.2)
~H €S i€[n]

Note that in caséS| < k, algorithm.4 addsk — |S| arbitrary vector taS, which can only decrease
the objective value of the solution.

First, a simple but important observation ([AB13]): for ahy d matrix M of rankd, we have

Ls L en(AM) | Baa(M)
w :;Mm: OO~ de

(3.3)

Therefore, we have

—1
o o(e) |- sy
o i€S seu "
_ w(S) det (VSVST) Ed—l(VSVST)
S Dsreu () det(Va V) det (VsV)
_ > s M(S)Ea1(VsVy)
S sey 1(S) det(Vs V)

We can now apply the Cauchy-Binet formula (3.1) far_;, E; = det, and the matriX/sVy to
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the numerator and denominator on the right hand side, and we get

-1
E |t Z vioT _ >_scu 2|T)=d—1,7cs H(S) det(V, Vr)
S pr i > seu M(S) 2o rima.res det (VR V)
_ Z|T|:d—1,Tg[n} det (VTTVT) ZSGZ/I,SQT n(S)
ZIRlzd,Rg[n] det (VRTVR) ZSGL{,SQR u(S)
Y ir=a-1cp det (V7 Vr) Pris 2 1]
Y Rednc det (VE Vi) Pr (S D R]

where we change the order of summation at the second to last equality. Next, we apply (3.3) and

the Cauchy-Binet formula (3.1) in a similar way to the matigr)V (z) "

Eaa(V(@)V(@)T) _ Xiriearre det(Ve(@) Vi)
det(V(@)V(2)") 32| pica pepe det(Ve(z) TVa(2))
_ D (T|=d—1,7C[n) det (Vy Vr) 2™
E|R|:d,R§[n} det (VRTVR) 't

tr (V(@)V(2)T) " =

where we use the fact thdtt(Vz(z) " Vz(z)) = 2% det(V, Vi) anddet(Vr(x) Vi (x)) = 2 det(V V)
in the last equality by Lemma 3.2.1.

Hence, the inequality (3.2) which we want to show is equivalent to

.
> irmdr.rc i det (V7 V) F:Lr SDT] S e det (Vi Vi) 7

<a (3.4)
Z\R|:d,R§[n] det (VRT VR) F;r [S 2 R] Z|R|:d,Rg[n] det (VRT VR) 't
which is equivalent to
> det (Vi V) det (V4 Vi) - 2™ - Pr(S D T)
T|=d—1,|R|=d a
<a Y det (Vi Vi) det (Vi V) -2" - Pr[S 2 R]. (3.5)
I

|T|=d—1,|R|=d
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Pr[SDOT]
By the assumption thgf =7 < ozj—ﬁ for each subset’, R C [n] with |T'| = d — 1 and|R| = d,

det (V! V) det (Vg V) - 2™ - Pr[S D T] < adet (V! V) det (Vi3 Vi) - 2" - Pr[S D R] (3.6)
M H

Summing (3.6) over all', R proves (3.5). O

3.3 Approximating Optimal Design without Repetitions

In this section, we prove Theorem 3.1.5 by constructingpproximate(d — 1, d)-independent
distributions for appropriate values af We first consider the case whén= d and then the
asymptotic case wheln = Q (¢ + 4 log 1). We also remark that the argument for= d can be

generalized for alk < d, and we discuss this generalization in Section 3.5.1.

3.3.1 d-approximatiorfor k = d

We prove the following lemma which, together with Theorem 3.1.3, implieglthpproximation

for A-optimal design whet = d.

Lemma 3.3.1.Letk = d. The hard-core distributiom on i/, with parameterr is d-approximate

(d — 1, d)-independent.

Proof. Observe that for ang§ € Uy, we haveu(S) = 2~ whereZ = Y s, = is the normaliza-

tion factor. For anyl”’ C [n] such that7| = d — 1, we have

Pr[SDT| = v | <dZ
SNL[_}_Z 77 Zx’—z'

SEUy,:SOT i€[n)\T
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where we usé = dand}_, ., 2; < k = d. ForanyR C [n] such thatR| = d, we have

PrisoR= Y —=—

Sowt Sely:SOR
Thus for anyT', R C [n] such that7| = d — 1 and|R| = d, we have

Pr [SQT] T

S gt
PriSo R~ "k
S~u

3.3.2 (1 + ¢)-approximation

Now, we show that there is a hard-core distributioon/<, that is(1 + ¢)-approximatdd — 1, d)-

independent wheh = Q (¢ + L log 1).

Lemma 3.3.2. Fix some) < € < 2, and letk = Q) <§ + bgi—%”) The hard-core distributiop on

U<, with parameter), defined by
Z;

No=

is (1 + e)-approximate(d — 1, d)-wise independent.

Proof. For simplicity of notation, let us denote= 1+ ¢, and§; = % Observe that the probability
mass undey. of any setS of size at most; is proportional to(]];. &) (H% (1— @;)). Thus,
u is equivalent to the following distribution: sample a #et_ [n| by including everyi € [n] in
B independently with probability;; then we have.(S) = Pr[B = S | |B| < k| for every S of
size at most. Let us fix for the rest of the proof arbitrary séfsR C [n] of sized — 1 andd,

respectively. By the observation above, risampled according te, andB as above, we have

Pr[SOT] Pr[B2Tand|B| < k] < Pr[B DT
Pr[SD R] Pr[B2 Rand|B| < k| ~ Pr[BD Rand|B| < k]
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We havePr[B D T| = ¢ = ﬁﬁ—:. To simplify the probability in the denominator, let us introduce,
for eachi € [n], the indicator random variablg, defined to b if ; € B and0 otherwise. By the
choice of 5, the Y;’s are independent Bernoulli random variables with mgamespectively. We

can write

Pr[BD Rand|B| < k] =Pr

v@'eRznzmndngk—d]

iZR

=PrVie R:Y,=1]Pr

ZYiék—d],

iZR

where the last equality follows by the independence oftheThe first probability on the right

hand side is just? = %_1:1 and plugging into the inequality above, we get
Pr[S D T <3 a7 (3.7)
PriSO R] = "l Pr[y,Yi<k—d '

We claim that

Pr[d Vi <k—d >1-
igR

1

aslong asg = Q2 (g’ + 6% log %) The proof follows from standard concentration of measure argu-

ments. Lety” = >, . Y;, and observe tha[Y] = L(k — x(R)), wherez(R) is shorthand for

— B
> icr Zi- By Chernoff’s bound,
Pr[Y > k — d] < e~ ss k() (3.8)
where
s_Blk—d) (8= Dk+x(R)—pd
k— 2(R) k —x(R) '
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The exponent on the right hand side of (3.8) simplifies to

0*(k —x(R)) _ ((B=Dk+=(R) - pd)?* _ (8- 1Dk = Bd)*
33 35(k — 2(R)) = 35k ‘

For the boundPr[Y > k — d] < ¢, it suffices to have

(8= 1)k — 8d > /3Blog(4/e)k.

Assuming that > 1%/ for a sufficiently big constant, the right hand side is at mogt. So,

as long as > Bﬂ the inequality is satisfied aritk[Y" > £ — d] < {, as we claimed.

—1-%’

The proof of the lemma now follows since for aj¥y| = d — 1 and|R| = d, we have

Pr[S D T] a7 <1—|—ixT

=211 "
- ﬁxRPr[ZigRY; <k—d —1-§af’

PS> (3.9)

and

1+§ <1+e. O
-1

The (1 + ¢)-approximation for large enoughin Theorem 3.1.5 now follows directly from

Lemma 3.3.2 and Theorem 3.1.3.

3.4 Approximately Optimal Design with Repetitions

In this section, we consider thé-optimal design without the boung, < 1 and prove Theo-
rem 3.1.6. That is, we allow the sample $eto be a multi-set. We obtain a tight bound on the
integrality gap in this case. Interestingly, we reduce the problem to a special casepimal
design without repetitions that allows us to obtained an improved approximation.

We first describe a sampling Algorithm 3.2 that achievé&—gﬁf—i-approximation forany > 0.
In the algorithm, we introduceoly(n, 1/¢) number of copies of each vector to ensure that the

fractional solution assigns equal fractional value for each copy of each vector. Then we use the
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proportional volume sampling where the measure distribytimdefined on sets of the new larger
ground setU over copies of the original input vectors. The distributjors just the uniform dis-
tribution over subsets of size of U, and we are effectively using traditional volume sampling
overU. Notice, however, that the distribution over multisets of the original set of vectors is dif-
ferent. The proportional volume sampling used in the algorithm can be implemented in the same
way as the one used for without repetition setting, as described in Section 3.6.1, which runs in
poly(n,d, k,1/e) time.

In Section 3.6.3, we describe a new implementation of proportional volume sampling procedure
which improves the running time tooly(n, d, k,log(1/¢)). The new algorithm is still efficient
even wherlJ has exponential size by exploiting the facts thas uniform and that/ has only at

mostn distinct vectors.

Algorithm 3.2 Approximation Algorithm forA-optimal design with repetitions
1: Givenz € R with " | z; = k, ¢ > 0, and vectorsy, . . ., v,.

2: Letq = 2. Setx} := kan/qu for eachi, and round each up to a multiple ofl /q.
3 If Y 2 < k,addl/q to anyz} until > 7" 2} = k.
4

i=1"1
: Createyx, copies of vectop, for eachi € [n]. DenotelV the set of siz& " | ¢z, = ¢k of all
those copies of vectors. Dendtethe new index set dfi’of sizegk. > This implies that we
can assume that our new fractional solutigr- 1/q is equal over ali € U
Sample a subs&t of U of sizek wherePr[S = S| o« det(WsWJ ) for eachS C U of sizek.
6: SetX; =), cw, L(wis acopy ofy;) for all i € [n] > Get an integral solutioiX” by counting

numbers of copies af; in S.

7: OutputX.

a

Lemma 3.4.1. Algorithm 3.2, when given as inpute R” s.t.> "  z; = k, 1 > ¢ > 0, and

v, ..., 0y, Outputs a randonX € Z" with >~" | X; = k such that
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Proof. Definex!,y, W,U, S, X as in the algorithm. We will show that

-1 -1
= k(1 +e€) =
T T
tr <; Xivv; > < ——— - d+ 7 (Zx VU, ) < k‘——d—{—ltr (lz_: TV, )

The second inequality is by observing that the scalihg= ’“‘T”/qxl multiplies the objective
tr (>0, xivl—v;)fl by a factor of(k_T”/q> . (1 —¢€/2)7! <1+ ¢, and that rounding; up and
addingl/q to anyz; can only decrease the objective.

To show the first inequality, we first translate the two key quantiti€$ "} | z}v,0, )_1 and
tr (30, Xiviv] ) from the with-repetition setting ovér and[n] to the without-repetition set-
ting overW andU. First,tr (37", x;vivj)_l =tr (X, y,-wiwf)_l, wherey; = % are all equal
over alli € U, andw; is the copied vector ifi’ at indexi € U. Secondfr (Y1, Xuo) )™ =
tr (Xescy wiw:") o
Let 11/ be the distribution over subsetsof U of sizek defined byy/(S) o det(WsWy ). Itis,

therefore, sufficient to show that the sampling distribufibsatisfies

SNH ( Z Wit ) = E_d+1 d—i—l <Z Yiw;w; ) (3.10)

1ESCU

Observe thap/ is the same as sampling a setC U of size k with probability proportional to
w(S) det(WsW4 ) wherey is uniform. Hence, by Theorem 3.1.3, it is enough to show that for all
T,RCUwith |T|=d—-1,|R| =d,

(3.11)
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With 1 being uniform and;; being all equal td /¢, the calculation is straightforward:

D —
Pt vy VS B R W (812)
SSE TN/ bt T 8

Therefore, (3.11) holds because

1 k
T k—d+1 ¢ k—d+1 q k—d+1

L 52T (yT)_l_qk—d—i—l 1< qk

]

Remark 3.4.2. The approximation ratio for A-optimality with repetitions fbr> d is tight, since

it matches the integrality gap lower bound stated in Theorem 3.7.3.

3.5 Generalizations

In this section we show that our arguments extend to the regimel and give a-approximation
(without repetitions), which matches the integrality gap of our convex relaxation. We also derive a

restricted invertibility principle for the harmonic mean of eigenvalues.

3.5.1 k-ApproximationAlgorithmfor & < d

¥ A7 where

t=1""

Recall that our aim is to select a s€tC [n] of sizek < d that minimizes)
A1, ..., A\ are thek largest eigenvalues of the matri%VJ'. We need to reformulate our convex
relaxation since wheh < d, the inverse ofV/(S) = >_

s Uiv; for |S| = k is no longer well-
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defined. We write a new convex program:

"o,
min Bir (S wivioy) (3.13)

Ey (3, wiviv])

S.t.
S a =k (3.14)
i=1
0<z;<1 Vi€]ln] (3.15)

Once again we denote the optimal value of (3.13)—(3.15LBy While the proof that this re-
laxes the original problem is easy, the convexity is non-trivial. Fortunately, ratios of symmetric

polynomials are known to be convex.

Lemma 3.5.1. The optimization probleni3.13){3.15)is a convex relaxation of thd-optimal
design problem wheh < d.

By (M)
Ey_1(M)

semidefinite matriced/ of rank at least. This was proved by [BM61, Theorem 4] for positive

Proof. To prove convexity, we first note that the functig\/) =

is concave on positive

definite M, and can be extended id of rank at least by a limiting argument. Alternatively, we

- ()) is concave on vectors € R¢ with

non-negative entries and at leagpositive entries. BecaU@as symmetric under permutations of

can use the theorem of [ML57] that the functigi\) =

its arguments and concave, afid//) = g(\(M)), where\(M) is the vector of eigenvalues o6f,
by a classical result of [Dav57] the functigiis concave on positive semidefinite matrices of rank
at leastk.

Notice that the objective (3.13) equqJﬁv}— for the linear matrix-valued function/ (x) =
Sor x| . Therefore, to prove that (3.13) is convexdirior non-negativer, it suffices to show
that ) is convex inM for positive semidefinitéd/. Since the functlori is convex and monotone
decreasmg over positive reals and f is concave and non-negative over positive semidefinite

matrices of rank at leagt, we have thatm is convex inM, as desired. Then (3.13)—(3.15)
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is an optimization problem with a convex objective and affine constraints, so we have a convex
optimization problem.
Let OPT be the optimal value of thé-optimal design problem, and Iétbe an optimal solu-
tion. We need to show th&@P < OPT. To this end, let be the indicator vector of, i.e.x; = 1
if and only ifi € S, andz; = 0 otherwise. Then,

CP < = OPT.

B (M(S)) 3L 1Hm -
E(M(S)  ILMM ZA

=1 z

Above,\;(M(S9)), ..., \e(M(S)) are, again, the nonzero eigenvaluedbfs) = >, g vy . O

We shall use the natural analog of proportional volume sampling: given a mgasar&ibsets
of sizek, we sample a sef with probability proportional tq.(S)E,(M(S)). In fact, we will
only takes(S) proportional tox®, so this reduces to samplirfgwith probability proportional to
Ey(icq Tiviv; ), which is the standard volume sampling with vectors scaleg/by and can be
implemented efficiently using, e.g. the algorithm of [DR10].

The following version of Theorem 3.1.3 still holds with this modified proportional volume
sampling. The proof is exactly the same, except for mechanically replacing every instance of

determinant by¥,,, of E,_; by E}_, and in general of by k.

Theorem 3.5.2.Given integersk < d < n and a vectorz € [0, 1]" such thatl"z = k, sup-
pose there exists a measyreon U, that is a-approximate(k — 1, k)-wise independent. Then
for x the optimal solution 0{3.13)+3.15), proportional volume sampling with measuyraives a

polynomial timen-approximation algorithm for thel-optimal design problem.
We can now give the main approximation guarantee we have fou.

Theorem 3.5.3.For any k& < d, proportional volume sampling with the hard-core measurmen
U, with parameter: equal to the optimal solution 8.13)}+3.15)gives ak-approximation to the

A-optimal design problem.
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Proof. In view of Theorem 3.5.2, we only need to show tpat k-approximatek — 1, k)-wise
independent. This is a straightforward calculation: Sox 1, and anyl’ C [n] of sizek — 1 and

R C [n] of sizek,

Pr[S§OT] x’ D igr Ti < kxT
Pr[SD R] xlt - xR

This completes thproof. O]

The algorithm can be derandomized using the method of conditional expectations analogously
to the case of = d that we will show in Theorem 3.6.5.

The k-approximation also matches the integrality gap of (3.13)—(3.15). Indeed, we can take a
k-dimensional integrality gap instanee, . .., v,, and embed it iR for anyd > k by padding
each vector with)'s. On such an instance, the convex program (3.13)—(3.15) is equivalent to the
convex program (2.1)—(2.3). Thus the integrality gap that we will show in Theorem 3.7.3 implies

an integrality gap of for all d > k.

3.5.2 Restricted Inertibility Principlefor Harmonic Mean

Next we state and prove our restricted invertibility principle for harmonic mean in a general form.

Theorem 3.5.4.Letvy, ..., v, € R% andcy, ..., ¢, € Ry, and defineVl = >~ | c;v;v;. For any

E<r= ti%), there exists a subsstC [n] of sizek such that the: largest eigenvalues, , ..., A;

of the matrixy_,_¢ v;v; satisfy

11\ k1 (M)
(zzx) > s

i=1 i=16i

Proof. Without loss of generality we can assume thaf_, c; = k. Then, by Theorem 3.5.3,

proportional volume sampling with the hard-core meaguval{, with parametet = (c1,...,¢,)
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gives a random se&f of sizek such that

where);(M(S)) is thei-th largest eigenvalues df/ (S) = Y, s v;v; . Therefore, there exists a

setS of sizek such that

11 L BOD a0
kg M(M(S) ) 7 Epa(M)  exa(MM))]

where\(M) is the vector of eigenvalues 8f. In the rest of the proof we compare the right hand
side above withr(M).

Recall that a vector € R? is majorized by a vectoy € R%, writtenz < v, if 2;:1 r;) <
Sy holds for alli € [n], and}>}" , ; = Y1, y;. Herex;) denotes thg-th largest coor-
dinate ofz, and similarly fory;). Recall further that a functiorf : RY — R is Schur-concave

if z < yimplies f(z) > f(y). The function-:“L_ was shown to be Schur concave by [GS12];

er—1(x)

alternatively, it is symmetric under permutationsecdnd concave, as shown in [ML57] (and men-
tioned above), which immediately implies that it is Schur-concave. We define a veutbich
majorizes\(M) by settingz; = %Zle Ai(M) fori € [r], andz; = 0 for ¢ > r (we assume here

that\, (M) > ... > A\y(M)). By Schur concavity,

e(AM)) _ en(z)  r—k4 1<
DO S e = 2N,

Sincer:1 Ni(M) = tr(M), and we assumed that” , ¢; = k, this completes the proof of the

theorem. u
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3.5.3 TheGeneralizedRatio Objective

In A-optimal design, givelv = [v; ... v,] € R¥" we state the objective as minimizing
A
DT Ear(VsVs)
EAVsV])
over subsefS C [n] of sizek. In this section, for any givefi < I’ < [ < d, we consider the
following generalized ratio problem

1
. EZ/(VSVST)) =
min e —— 316
SCn],|S|=k (El(VSVST) 319

The above problem naturally interpolates betwdenptimality andD-optimality. This follows

since forl = d andl’ = 0, the objective reduces to
i _ : 3.17
SClnl|S|—k (det(VsVST)) ' .17
A closely related generalization betweédnand D-criteria was considered in [MS17]. Indeed,

their generalization corresponds to the case whenl and!’ takes any value frorfi andd — 1.

In this section, we show that our results extend to solving generalized ratio problem. We begin

by describing a convex program for the generalized ratio problem. We then generalize the propor-

tional volume sampling algorithm faroportional/-volume samplingFollowing the same plan as

in the proof of A-optimality, we then reduce the approximation guarantee to near-independence

properties of certain distribution. Here again, we appeal to the same product measure and obtain

identical bounds, summarized in Table 3.3, on the performance of the algorithm.

Convex Relaxation

As in solving A-optimality, we may define relaxations for with and without repetitions as follows.
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Table 3.3: Summary of approximation ratio obtained by our work on generalized ratio problem.

A-optimal By (VsVd) D-optimal
Problem C=d—11=d | 2o in (5 e ) ' =0.1=d
Casek = d d L=+ < l—l e
without Repetitions| & > (%‘ + h’i—%) k> Q <é + bgg—%) k>Q <§ + bgg—%)
Arbitrary k andd & K k
With Repetitions k—d+1 k—l+1 k—d+1
Asymptotick >> d 1 +¢, for 1 + ¢, for 1+ ¢, for
With Repetitions k>d+ 4 k>1+1 k>d+4
With Repetitions Without Repetitions
Ey (V(z)V(z)T" = Ey (V(z)V(x)" =
min : ( (z) (a:)T) min : ( (z) (x)T) (3.18)
B (V(z)V(x)") E (V(z)V(x)")
st Y mi=k st. Y xmi=k (3.19)
i=1 i=1
0<ux; Vie]|n] 0<z; <1 Vie|[n] (3.20

Ey(V@Vv@T) " . .
We now show th Ee(V@V@!) i nvex inz.
e now sho ta( l(v(x)v(m)T)) s convex inx

Lemma 3.5.5.Letd be a positive integer. For any given pair< I’ < | < d, the function

fra(M) = (E];ll((]\j‘j))) o (3.21)

is convex ovetl x d positive semidefinite matrix/.

Proof. By Theorem 3 in [BM61](fy (M)~ = <gl((§@>)) ~" is concave on positive semidefinite

matricesM foreach0 <!’ <1 <d. The function% is convex and monotone decreasing over the
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positive realsz, and this, together with the concavity of,;(M))~! and that(f, ,(M))~! > 0,

implies thatf, ;,(M) is convex in)/. O

Approximation vig!’, [)-Wise Independent Distribution

Let0 <! <l < dandU € {Uy,U}. We first show connection of approximation guarantees

1
Ey (VSVST)> = Ey(VsVy) .
BV d BVav ) - Suppose we already solve the convex relaxation of

on objectives(
generalized ratio problem (3.18)-(3.20) and get a fractional soluti@uppose that a randomized

algorithm.4, upon receiving input’ € R*>" andx € R™, outputsS € I/ such that

. [Emvsvg ) < SE(V@V@)) 3.22)
S~A

Ei(VsVs') E(V(x)V(x)")

for some constant’ > 0. By the convexity of the functiorf(z) = z'~" over positive reals, we

have

(El/(M)) ] (3.23)

E {El/(M)} SE

Ey (M) Ey(M)

for any semi-positive definite matrix/. Combining (3.22) and (3.23) gives

Er(VsVONTT] L (EV @)V (@) )\
(Fvas) ]S (Fvoren) 824

S~A

wherea = (a’)ﬁ. Therefore, it is sufficient for an algorithm to satisfy (3.22) and give a bound
onc<’ in order to solve the generalized ratio problem up to faator
To show (3.22), we first define the proportiofialolume sampling and-approximate(l’, 1)-

wise independent distribution.

Definition 3.5.6. Let i be probability measure on setsify (or U<;). Then the proportionak
volume sampling with measurepicks a set of vectors indexed Sye U, (orl<,) with probability

proportional tou(S) £, (VsVy ).
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Definition 3.5.7. Given integersl, k, n, a pair of integer® < I’ < [ < d, and a vector: €
0, 1]" such thatl "> = k, we call a measurg on sets irl4;, (or U<},), a-approximatg(l’, [)-wise

independent with respect toif for any subsetd”, 7' C [n| with |7”| = I’ and|T'| = [, we have

Prs..[T" C S] o

T
8

wherez!” :=T],_; z; forany L C [n]. We omit “with respect ta" when the context is clear.

The following theorem reduces the approximation guarantee in (3.22pmproximate!’, [)-

wise independence properties of a certain distributidsy utilizing proportionall-volume sam-

pling.

Theorem 3.5.8.Given integersl, k,n, V = [v; ... v,] € R¥" and a vectorr € [0, 1]" such that
1"z = k, suppose there exists a distributipron sets iri4;, (or U<;) and isa-approximate(l’, )-

wise independent for some< I’ < [ < d. Then the proportionalvolume sampling with measure

By (VsVy)
E(VsVy)

_1
1 gives am-approximation algorithm for minimiziné ) " over subsets C [n] of size

k.

Proof. Let 1/ denote the sampling distribution ovi#r whereld = U, or U<, with probability of
samplingS € U proportional tou(S) E;(VsV ). We mechanically replacg, R, d — 1,d,and det
in the proof of Theorem 3.1.3 with’, 7', /', [, and E; to obtain

-1

~1
T -l T
3%/ tr (Z V;V; ) <ot tr Z TV,

€S i€n)
We finish the proof by observing that (3.22) implies (3.24), as discussed earlier ]

The following subsections generalize algorithms and proofs for with and without repetitions.
The algorithm for generalized ratio problem can be summarized in Algorithm 3.4. Note that effi-

cient implementation of the sampling is described in Section 3.6.5.
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Algorithm 3.3 Generalized ratio approximation algorithm

1: Given an inputl’ = [vy,...,v,] wherev; € R?, k a positive integer, and a pair of integers
0<I'<I<d.

x x T = .
2: Solve the convex relaxatian = argmin,c ., (E”(V( Vi) ))) whereJ = [0, 1] if

E(V(2)V(2)T
without repetitions oR* if with repetitions.
if £k =1[then
Sampley/(S) x 2°E; (VsVy ) for eachS € Uy
else ifwithout repetition setting and > Q2 (% + bgi#) then
Sampley/(S) o< A9E; (VsVy' ) for eachS € U<, where),; :=
else ifwith repetition settinghen
Run Algorithm 3.2, except modifying the sampling step to sample a sbskU of size
k with Pr[S = S] oc E{(WsWg ).
9: OutputS (If |S| < k, addk — |S| arbitrary vectors t& first).

R
1+6/471’2‘

© N g AW

Approximation Guarantee for Generalized Ratio Problem without Repetitions

We prove the following theorem which generalize Lemmas 3.3.1 and 3.3.2«-Hpproximate
(I',1)-wise independence property, together with Theorem 3.5.8, implies an approximation guar-
antee for generalized ratio problem without repetitions for= [ and asymptotically fok =

Q(£+€%log%).

€

Theorem 3.5.9.Given integersl, k, n, a pair of integerd) <!’ <[ < d, and a vector: € [0, 1]"
such thatl "z = k, the hard-core distribution: on sets i, with parameterz is a-approximate

(I',1)-wise independent when= [ for

el

__1
Oé:l[(l—l/)'] - Sl_l/

(3.25)

Moreover, for anyd < ¢ < 2 whenk = Q (£ + % log 1), the hard-core distribution on /<,

with parameter\, defined by
T

M= ——

is (1 + €)-approximate(l’, [)-wise independent.
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Thus for minimizing the generalized ratio probl %) = over subset$' € [n] of size

k, we obtain
. (lf—’l,)-approximation algorithm wheh = [, and
* (1 + ¢)-approximation algorithm wheh = Q (£ + L log 1).

Proof. We first prove the result fok = [. For allT’, T C [n] such thalT’| = ', |T| = I,

P o7 T’ , L T
R LD S R 2 (L R S D
SPV [S2T] > s1=rsor2® 't B at

~u =

We now use Maclaurin’s inequality ([LT93]) to bound the quantity on the right-hand side

Z wt = ep(r) < (lfl’>( 1) /n)' ' < ( — ) (1/n)"~ ' (ll__l/)! (3.26)

LE(k l’)

Therefore, [ |
rSo7 [
S~ l X
< N 3.27
Sr[SQT]_(l—l’)!xT ( )
~p

which proves thgl’, [)-wise independent property @f with required approximation ratio from
(3.25).

We now prove the result fat = Q (£ + 4 log ). The proof follows similarly from Lemma
3.3.2 by replacing’, R with T", T' of sizes!’, [ instead of sized — 1, d. In particular, the equation

(3.7) becomes
T/

Pr[S§ D 717 < ( +E>l v x
PrS2T] — 4 TP Yi < k=1

(3.28)

and the Chernoff’'s bound (3.8) still holds by mechanically replacing with [, T' respectively.

The resulting approximation ratio satisfies

-l
ol = —(1 f—_Z) <1+

£
4
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where the inequality holds becausg 2. ]

Approximation Guarantee for Generalized Ratio Problem with Repetitions

We now consider the generalized ratio problemth repetitions The following statement is a

generalization of Lemma 3.4.1.

Theorem 3.5.10.GivenV = [v; vy...v,] Wherev; € RY, a pair of integers) < I’ < [ <

d, an integerk > [, and1l > € > 0, there is ana-approximation algorithm for minimizing

Ey(VsVd )\ =7 7 . . .
< i (vivj)) over subsets$' C [n] of sizek with repetitions for
k(1+¢€)
—_— 3.29
R T (3:29)

Proof. We use the algorithm similar to Algorithm 3.2 except that in step (5), we sasgleU
of sizek wherePr[S = S] «x E;(WsWy ) in place of Pr[S = S] «x E;(WsWJ). The anal-
ysis follows on the same lines as in Lemma 3.4.1. In Lemma 3.4.1, it is sufficient to show that

the uniform distributiory. over subsets’ C U of sizek is ——~ d+1 -approximate(d — 1, d)-wise

independent (as in (3.10)). Here, it is sufficient to show that the same uniform distrilutton
Pr[SDT"]

e approxmate(l’ [)-wise independent. Far, T’ C [n] of sizel’,, the calculation of,‘;[TT
andy is straightforward

Pr [S D) T,] qgk—U' qk = (1. _ 7\| T

I _ (k—l’)/(k) S (qk) (k l) and y_ — ql—l’ (330)

ar [S2T] (%1 (%) (k —1I")! yT

k—1 k
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Therefore u is a-approximatg!’, [)-wise independent for

o =

Pris2 T =7 L o
ur[ = ]£ - (qk:)l l(k:—l)! v\
PriSDT] o7 = (k—1)!
7
k k
— <
[(k—1)(k=V—=1)(k—1+ 17 ~ k—=1+1

as we wanted to show O

We note that thé-proportional volume sampling in the proof of Theorem 3.5.10 can be imple-

mented efficiently, and the proof is outlined in Section 3.6.5.

Integrality Gap

_1
Finally, we state an integrality gap for minimizing generalized ratio objeﬁ@%) " over
S
subsetsS C [n] of sizek. The integrality gap matches our approximation ratio of our algorithm

with repetitions wherk is large.

Theorem 3.5.11.For any given positive integerk, d and a pair of integerd) < I’ < [ < d

with & > [, there exists an instancé = [v,...,v,] € R¥" to the problem of minimizing

1
(%@) """ over subset$ C [n] of sizek such that
S

k
OPT> (— _5).cP
—(k—z' )C

for all 6 > 0, whereOPT denotes the value of the optimal integral solution &#ldenotes the

value of the convex program.

1

This implies that the integrality gap is at Ie%éjg—, for minimizing<w> " over subsets

E(VsVd)

S C [n] of sizek. The theorem applies to both with and without repetitions.

Proof. The instancd” = [vy, ..., v,| will be the same for with and without repetitions. For each
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1 <i < d, lete; denote the unit vector in the direction of axisChoose

VN -e; fori=1,...,1I

V; =
€; forizl,...,l,

whereN > 0 is a constant to be chosen later. 8et > [ to be at leask copies of each of these
for ¢ < [, as we can make as big as needed. Hence, we may assume that we are allowed to pick
only v;,7 < [, but with repetitions.

Let S* represent the set of vectors in OPT apdbe the number of copies af in S* for
1 <i<I. Clearlyy; > 1foralli =1,...,[ (else the objective is unbounded). The eigenvalues of
Vs V4. are

A(VS*VSI) = (lea y?Na s 7yl’N7yl’+17yl’+27 s 7yl707 e 70)

Hence, bothEy (Vs Vi) = ey()\) and Ey(Vs-V4.) = e()\) are polynomials in variabled/ of

degred’.
Now let N — oo. To compute(OPT)!!" = % we only need to compute the co-

efficient of the highest degree monomisil’. The coefficient ofN" in e;()), e;(\) are exactly

H?:l Yis Hﬁzl y;, and therefore

-1
T
(OP_I_)lfl/ _ El,(VS*Vi*> _ Hz 1?/1 H n
EI(VS*VS*) Hz 1yz i=l'+1

Observe thaﬂﬁzl,+1 y; IS maximized under the budget constraEi:1 y; = |5*] = kwheny, =1

forj=1,...,I'. Therefore,

! ] ! =¥ RN
11 yig(l—z',z yi) :(l—l’)
i=l'41 i=l'+1

where the inequality is by AM-GM. Hence, OPT is lower bounded by a quantity that converges to
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,i%lll,aSN—>oo.

We now give a valid fractional solutionto upper boundP for eachN > 0. Choose

fori=1,...,1

T, =

YN fori=1+1,...,1

0 fori > 1

Then, eigenvalues df (z)V (z)" are

N = AV(2)V(z)") = (21N, 29N, ..., 5y N, zp 41, T4, ..., 21,0,...,0)

= (k\/ﬁ,k’\/ﬁ, .. .,k\/ﬁ,l’l/+1,l’l/+2, c. ,xl,O, .. ,0)

Now asN — oo, the dominating terms o, (V (z)V (z)T) = ey (X) is [, (kvV/N) = k' (V/N)Y.

Also, we have

l/

E(V(@)V(x)) =ea)=][:vVN) T] =

i=1 i=l'+1

kN -1
_ kl’ (k_ \/N) (\/N)l’ - k,l’ < k ) (\/N)l’

L=

Hence,
T = o
op < (B WV@V@H\™ 1
“\E((V(2)V(z)T) k
Therefore,% is lower bounded by a ratio which convergesté, - £ = . O

3.6 Efficient Algorithms

In this section, we outline efficient sampling algorithms, as well as deterministic implementations

of our rounding algorithms, both for with and without repetition settings.
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3.6.1 EfficientRandomizedProportional Volume

Given a vecto\ € R", we show that proportional volume sampling wjthS) o A for S € U,
whereld € {Uy, U<} can be done in time polynomial in the sizeof the ground set. We start
by stating a lemma which is very useful both for the sampling algorithms and the deterministic

implementations.
Lemma3.6.1.LetA € R?,vy,...,v, € R, andV = [vy,...,v,). Let], J C [n] be disjoint. Let
1 <k <n,0<dy<d. Consider the following function

F(tl, tQ, t3> = det ([n + tldIaQXy) + tltgdia(;(y)1/2VVTdiag(y)l/2)

wherety, t5,t3 € R are indeterminate/,, is then x n identity matrix, andy € R™ with

(

Aits, ifiel

Yi 0, ifieJ

Ais otherwise

\

ThenF(t4,ts,t3) is a polynomial and the quantity

> A>T det(V] V) (3.31)

|S|=k,ICS,JNS=)  |T|=do,TCS

is the coefficient of the monomlﬁkgotgj'. Moreover, this quantity can be computedirin®dok|I| - log(dok|I|))

number of arithmetic operations.

Proof. Let us first fix some5 C [n]. Then we have

> det(V Vi) = By (Vi Vi) = [t5°) det(Is + V5V ),

‘T|:d07TQS
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where the notatiorit}]p(t,) denotes the coefficient af° in the polynomialp(t,) = det(Is +
t,VsV4 ). The first equality is just Cauchy-Binet, and the second one is standard and follows from

the Leibniz formula for the determinant. Therefore, (3.31) equals

[td0] > A det(Is + taVsVy ).
|S|=k,ICS,JNS=0

To complete the proof, we establish the following claim.

Claim 1. Let L be ann x n matrix, and let\, I, J, k, y be as in the statement of the Lemma. Then,

> Mdet(Lss) = [t} By (diagly)/2L diag(y)"/?)
|S|=k,ICS,JNS=0

= [tlftgl] det (I, + t,diag(y)'/2L diag(y)l/z) _
Proof. By Cauchy-Binet,

Ey (diagy)'/*L diag(y)'/*) = > y° det(Lss)

IS|=k

= ¥ NS det(Lg.g).
|S|=k,JNS=0

The first equality follows. The second is, again, a consequence of the Leibniz formula for the

determinant. ]

Plugging inL = I, + t,VV " in Claim 1 gives that (3.31) equals

[tedoe) det (I, + tdiag(y)/?(I,, + t,VV T )diag(y)'/?)

= [thedoe) det (I, + tydiag(y) + it diag(y)/>VV Tdiag(y)'/?) .

This completes the proof. For the running time, the standard computation time of matrix mul-
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tiplication and determinant of x n matrices isO(n?®) entry-wise arithmetic operations. We
need to keep all monomials in the fortfrsts wherea < k,b < dy,c < |I|, of which there
areO(dyk|I|) of those. By representing multivariate monomials in single variable ([Pan94]), we
may use Fast Fourier Transform to do one polynomial multiplication of entries of the matrix in
O (dok|1] - log(dok|I|)) number of arithmetic operations. This gives the total running time of

O (n®dok|I| - log(dok|I|)). O
Using the above lemma, we now prove the following theorem that will directly imply Lemma 3.1.10.

Theorem 3.6.2.Let\ € R} ,vy,... v, € RE1 <k <n,U € {Up, Ui}, andV = [vy, ..., 0]
Then there is a randomized algorithiwhich outputsS € U/ such that
A det(VsV)

Pr[S=29]= ——

That is, the algorithm correctly implements proportional volume samplingith hard-core mea-
sure . on U with parameter\. Moreover, the algorithm runs i® (n*dk?log(dk)) number of

arithmetic operations.

Observation 3.6.3.[WYS16] shows that we may assume that the support of an extreme fractional
solution of convex relaxation has size at mbst d>. Thus, the runtime of proportional volume
sampling isO ((k + d?)*dk*1og(dk)). While the degrees ir, k are not small, this runtime is

independent of.

Observation 3.6.4.1t is true in theory and observed in practice that solving the continuous re-
laxation rather than the rounding algorithm is a bottleneck in computation time, as discussed in
[ALSW17a]. In particular, solving the continuous relaxatiomedptimal design take® (n?** logn)
number of iterations by standard ellipsoid method ah@n + d?)*°) number of iterations by

SDP, where&)(n“) denotes the runtime of x n matrix multiplication. In most applications where

n >> k, these running times dominates one of proportional volume sampling.
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Proof. We can sample by starting with an empty Set (). Then, in each step=1,2,...,n, the

algorithm decides with the correct probability

PrieS[ICS,JNS =0

S~/

whether to include in S or not, given that we already know that we have included S and

excluded/ from S from previous steps$, 2, ...,i — 1. LetI’ = I U{i}. This probability equals to

Pr[I'CS,JNS =]

. S~pu!
P SIICS,JNnS =10 =
SNL/[ZE ires, 0] SPr [ICS,JNS=1]
NH,

 Ysaurcsns—o N det(VsVy)
B Y oscuacsans—o A det(VsVy)
 Dsaurcsans=o N 2iri—arcs t(VRVR)
B > s, 18,0n5—=0 A° D |Ri=d,RCS det(VrVZ)

where we apply the Cauchy-Binet formula in the last equality. #fox U, both the numer-
ator and denominator are summations o¢erestricted to|S| = k, which can be computed in
O (n3dk*log(dk)) number of arithmetic operations by Lemma 3.6.1. For the ¢ase Uy,
we can evaluate summations in the numerator and denominator restrigt€d o k, for each
ko = 1,2,...k by computing polynomiaF'(¢,,t,,t3) in Lemma 3.6.1 only once, and then sum

those quantities ovely. n

3.6.2 Efficient DeterministicProportional Volume

We show that for hard-core measures there is a deterministic algorithm that achieves the same
objective value as the expected objective value achieved by proportional volume sampling. The

basic idea is to use the method of conditional expectations.

Theorem 3.6.5.Let\ € R, vy,...,v, € RY,1 <k < n, U € {Us, Ui}, @andV = [y, ..., v,).
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Then there is a deterministic algorithil which outputsS* C [n] of sizek such that
Ty\—1 T\ —1
tr (Voo Vel ™ > B [tr (VVd) 7|
W

wherey/ is the probability distribution defined by (S) o A% det(VsVy4 ) forall S € U. Moreover,

the algorithm runs irO (n*dk?log(dk)) number of arithmetic operations.

Again, with the assumption that < k + d? (Observation 3.6.3), the runtime for deterministic

proportional volume sampling @ ((k + d?)*dk*log(dk)).

Proof. To prove the theorem, we derandomize the sampling algorithm in Theorem 3.6.2 by the
method of conditional expectations. The deterministic algorithm starts $tite= (), and then
chooses, at each stép- 1,2, ..., n, whether to pick to be inS* or not, given that we know from
previous steps to include or exclude each eleme®t. .. i — 1 from S*. The main challenge is

to calculate exactly the quantity of the form

X(1,0) = B e (VsVd) T c S, IS =0

S~

wherel, J C [n] are disjoint. If we can efficiently calculate the quantity of such form, the al-
gorithm can, at each step= 1,2,...,n, calculateX (/" U {i}, J") and X (I', J" U {i}) where
I'.J" C [i — 1] denote elements we have decided to pick and not to pick, respectively, and then

includei to S* ifand only if X (I’ U {i},J') > X (I, J' U {i}).

57



Note that the quantity (7, /) equals

E [tr (VsVs) I CS8,JNnS = @} = ) PrS=S[IcS,.8nJ =0t [(VsVs) ]

o seu, "
1CS,JNS=0
AS det (Vs V) L
> 3 detvev T LVYs )]
Seu, S'eld, 1CS,JNS=0 S Vg
1CS,JNS=0

_ Y seutcs.ans—o N Ea-1(VsVy)

- D seu1c5,0n5=0 N Do\R|=d,Rc s det(VRV})
 2Seuics,uns=o AN Y piea1res det (Ve Vi)
N > seu1C5,In5=0 A D_|Rl=d,RCS det(VrVy )

where we write inverse of trace as ratio of symmetric polynomials of eigenvalues in the third
equality and use Cauchy-Binet formula for the third and the fourth equality. The rest of the proof
is now identical to the proof of Theorem 3.6.2, except with different paramétersd — 1,d in

f(t1,ta,t3) when applying Lemma 3.6.1 O

3.6.3 Efficient Randomizedmplementatiorof £/ (k — d + 1)-ApproximationAlgorithm With
Repetitions

First, we need to state several Lemmas needed to compute particular sums. The main motivation
that we need a different method from Section 3.6.1 and 3.6.2 to compute a similar sum is that we
want to allow the ground séf of indices of all copies of vectors to have an exponential size. This
makes Lemma 3.6.1 not useful, as the matrix needed to be computed has dinEhsidli|. The

main difference, however, is that the parameté& now a constant, allowing us to obtain sums by

computing a more compadtx d matrix.

Lemma 3.6.6.LetV = [vy,...,v,,] be a matrix of vectors; € R¢ with n > d distinct vec-

tors. LetF C [m| and let0 < r < dand0 < dy < d be integers. Then the quantity
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> (7o i det(V7 Vi) is the coefficient of{~“¢50~"¢5 in

f(tl, tQ, tg) = det (tlld + Z t3UZ"UiT + Z tz’U{UJ) (332)
i€l i¢F
wheret,, t5, t3 € R are indeterminate and; is thed x d identity matrix. Furthermore, this quantity

can be computed i® (n(d — dy + 1)d3d? log d) number of arithmetic operations.

Proof. First, note thatlet (¢, + Y, tsv;0] + > ier b)) = [T, (t: + v;) wherev(M) =
{v1,...,vq} is the vector of eigenvalues of the matfix = >, _,. tsv;v + digr tyvv;. Hence,
the coefficient of{ ™ in det (t1 + Y, taviv, + Y g p t2vivy ) iS eq, (v(M)).

Next, observe thad/ is in the formV’V'T whereV’ is the matrix where columns akgts;uv;,

i € F andy/tov;,i ¢ F. Applying Cauchy-Binet tdz,, (V'V'T), we get

By, (Z tsvi] + Y tovw] ) = Eg,(V'V'T) = > det(V{V7)

i€F i¢F |T|=do
||

=Y > det(Vp'V)

1=0 |T|=do,|TNF|=I
||

=> >t det(V V),
1=0 |T|=do,|TNF|=I

where we use Lemma 3.2.1 for the last equality. The desired quantity ; \rrpi—, det (V4! V)
is then exactly the coefficient at= r in the sum on the right hand side.

To compute the running time, since there are amlglistinct vectors, we may represent sets
V, F' compactly with distincty;’s and number of copies of each distingts. Therefore, com-
puting the matrix sum take® (nd?) entry-wise operations. Next, the standard computation time
of determinant ofl x d matrix is O(d®) entry-wise arithmetic operations. This gives a total of
O (nd* + d) = O (nd?) entry-wise operations.

For each entry-wise operation, we keep all monomials in the 6t wherea < d —dy, b <
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dy — r,c < r, of which there ar@((d — dy + 1)d?). By representing multivariate monomials in
single variable ([Pan94]) of degré¥(d—d,+1)d3), we may use Fast Fourier Transform to do one
polynomial multiplication of entries of the matrix i ((d — dy + 1)d? log d) number of arithmetic

operations. This gives the total runtime®@fn(d — dy + 1)d2d* log d) arithmeticoperations. []

Lemma 3.6.7.LetV = [vy,...,v,,] be a matrix of vectors; € R? with n > d distinct vectors.
Let ¥ C [m] and letd0 < r < dand0 < dy < d be integers. There is an algorithm to compute

> |S|=k.SOF E4,(VsV{ ) with O (n(d — dy + 1)d2d? log d) number of arithmetic operations.

Proof. We apply Cauchy-Binet:

Y B,V = DY D det(Vi V)

|S|=k,SDF |S|=k,SDF |T|=do,TCS

m—|F|—dy+ |FNT)|

= det(V V;

2 det(Vy T)(k— IF|—do+ |FNT)

|T'|=do

d

m—|F| —do+r T

Z(k—|F|—do+r) >, det(VyVi)

r=0 |T|=do,| FNT|=r
where we change the order of summations for the second equality, and enumerate over possi-
ble sizes ofF' N T to get the third equality. We compujgt,t.,t3) in Lemma 3.6.6 once with
O (n(d — dy + 1)dgd* log d) number of arithmetic operations, so we obtain valu€siof,_,  pg—, det(Vy V)

forallr =0,...,dy. The restis a straightforwaihlculation. [

We now present an efficient sampling procedure for Algorithm 3.2. We want to sashple
proportional todet(WsW4 ). The setS is a subset of all copies of at mastistinct vectors, and
there can be exponentially many copies. However, the key is that the quatity, t3) in (3.32)

is still efficiently computable because exponentially many of these copies of vectors are the same.

Theorem 3.6.8.Given inputsn, d, k,e,z € R with }°" , z; = k, and vectorsy, ..., v, to

Algorithm 3.2 we defing, U, W as in Algorithm 3.2. Then, there exists an implementatbn
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that samplesS from the distributiory’ over all subsetss C U of sizek, wherey/ is defined by
Prs..[S = S] o« det(WsW{ ) for eachS C U, |S| = k. Moreover,A runs in O (n*d*k log d)

number of arithmetic operations.

Theorem 3.6.8 says that steps (4)-(5) in Algorithm 3.2 can be efficiently implemented. Other
steps except (4)-(5) obviously uée(n?d*klog d) number of arithmetic operations, so the above
statement implies that Algorithm 3.2 runs @n(n?d*klog d) number of arithmetic operations.

Again, by Observation 3.6.3, the number of arithmetic operations is ilfagt + d?)?d*k log d).

Proof. Let m; = gz, be the number of copies of vectoy (recall thatg = z—g). Let w; ; denote
the jth copy of vectow;. Write U = {(i,7) : i € [n],j € [m;]} be the new set of indices after the
copying procedure. Denotg a random subset (not multiset) Bfthat we want to sample. Write
W as the matrix with columns; ; for all (¢, j) € U. LetE; = {w;; : j = 1,...,m;} be the set of
copies of vecton;. For anyA C U, we say thatd hask; copies ofy; to mean thatA N E;| = k;.
We can define the sampling algorithhby sampling, at each stgp= 1,...,n, how many

copies ofy; are to be included iv C U. Denoteu’ the volume sampling o/ we want to sample.

The problem then reduces to efficiently computing

Pr [S hask; copies ofv,|S hask; copies ofv;, Vi = 1,...,t — 1]
H,
Pr[S hask; copies ofv;, Vi = 1,...,1]
,LLI

= . 3.33
P/r [S hask; copies ofv;, Vi = 1,...,t — 1] ( )
W

foreachk;, =0,1,... . k— Zﬁ;} k;. Thus, it suffices to efficiently compute quantity (3.33) for any
givenl < ¢ <nandk,,...,k suchthal ! k; < k.

We now fixt, ki, ..., k. Note that for anyi € [n], getting any set of; copies ofv; is the
same, i.e. event§ N £; = F; andS N E; = F/ underS ~ p’ have the same probability for

any subsetd;, I/ C E; of the same size. Therefore, we fix one setkpitopies ofv; to be
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F,={w;; :5=1,... k;}foralli € [n] and obtain

t
Pr [S hask; copies ofv;, Vi = 1,. . H ( )Pr [SNE; =F,Vi=1,...1]

=1

Therefore, (3.33) equals

T, (m) PriSNE; = F;,Vi=1,...1] _ (Tm) D S| =k, SNE = F; Mie1,.t det(WsWy)
1 (ml)Pr SNE; =F,Vi=1,...t —1] ke ) 32 51=k 5005, =Fy i1, .11 Aet(Ws W)

(3.34)

To compute the numerator, defifi¢ a matrix of vectors in¥’ restricted to indice&\ (U;_, E; \ F}),

andF := |J;_, F;, then we have

> det(WsWg ) = > det(WiWg') (3.35)
|S|=k,SCW,SNE;=F; Yi=1,...t |S|=k,SCW',SDF
By Lemma 3.6.7, the number of arithmetic operations to compute (3.8b)i$d — dy + 1)d2d*logd) =
O (nd*log d) (by applyingd, = d). Therefore, because in each step 1,2, ...,n, we compute
(3.33) at mostk times for different values ok;, the total number of arithmetic operations for

sampling algorithmA is O (n?d*k log d). O

Remark 3.6.9. Although Theorem 3.6.8 and Observation 3.6.3 imply that randomized round-
ing for A-optimal design with repetition take ((k + d?)2d*k log d) number of arithmetic oper-
ations, this does not take into account the size of numbers used in the computation which may

scale with input. It is not hard to see that the sizes of coefficiefits, t,, t3) in Lemma 3.6.6,

m—|F|—do+r

of the number( e

) in the proof of Lemma 3.6.7, and df;") in (3.34) scale linearly
with O(klog (m)) wherem = 1" m;. As we applym < gk = 2 in the proof of Theo-
rem 3.6.8, the runtime of randomized rounding Asoptimal design with repetition, after taking

into account the size of numbers in the computation, has an extra factdegif” ) and becomes
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0 ((k + d?)2d%? log dlog(#))).

3.6.4 Efficient Deterministicimplementatiorof &£/ (k — d + 1)-ApproximationAlgorithm With

Repetitions

We show adeterministicimplementation of proportional volume sampling used for ﬁﬂgﬁ
approximation algorithm with repetitions. In particular, we derandomized the efficient implemen-
tation of steps (4)-(5) of Algorithm 3.2, and show that the running time of deterministic version is

the same as that of the randomized one.

Theorem 3.6.10.Given inputsn, d, k,e,z € R with " , =; = k, and vectorsy,...,v, to
Algorithm 3.2, we defing, U, W as in Algorithm 3.2. Then, there exists a deterministic algorithm

A’ that outputsS* C U of sizek such that
r(WeWd) ™ > E [ (Wewd)™|
S = s S
where,/’ is a distribution over all subsetS C U of sizek defined byu/(S) o< det(WsWJ ) for

each setS C U of sizek. Moreover,A’ runs inO (n?d*k log d) number of arithmetic operations.

Again, together with Observation 3.6.3 and Remark 3.6.9, Theorem 3.6.10 implies that the
%H-approximation algorithm foA-optimal design with repetitions can be implemented deter-
ministically in O ((k + d?)?d*k log d) number of arithmetic operations and, after taking into ac-

count the size of numbers in the computatior()irﬁ(k; + d*)2d*k? log dlog(@)) time.

Proof. We can define the deterministic algorith#i by deciding, at each stgp= 1,...,n, how

many copies ob; are to be included i8* C U. The problem then reduces to efficiently computing

X(k1,. .. k) = Ql:: [tr (WSWQ)A |S hask; copies ofv;, Vi =1,...,t — 1,t] (3.36)
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whereky, ..., k;_, is already decided by previously steps of the algorithm, and now we compute
(3.36) foreachk; =0,1,... k— Zf;} k;. A’ then chooses value &f which maximizes (3.36) to
complete step.

Recall the definitions from proof of Theorem 3.6.8 tliat F; are the sets of fixed; copies
and all copies ofy;, respectively,lW”’ is the matrix of vectors iV restricted to indiced/ \

(Uiz, i\ ), andF := J;_, F. Consider that

X(ky, ... k) = > Pr[S = S|S hask; copies ofv;, Vi = 1,... ] tr [(WsWg )]
scuylsi=k; "
|SAEL ks Wim1,...t
det(WsW4

T
SctTalk: 2SO =kl S B =k vizt, .t AH(Ws W)
|SNE;|=k;,Vi=1,...,t

77777

~~~~~

[T (8) Xscoysiwsor Bt (WEWE')
ITio1 (5) Xscuysi—rsor det(WeWg ')
- ZSQU;|S|=k;S;F Ed—l(WfqWéT)
N > SCUL|S|=k:SDF det(WW§ ')

By Lemma 3.6.7, we can compute the numerator and denominatofrid — dy + 1)d3d? log d) =
O (nd*log d) (by applyingd, = d — 1, d) number of arithmetic operations. Therefore, because in
each steg = 1,2,...,n, we compute (3.36) at mosttimes for different values of;, the total

number of arithmetic operations for sampling algorithnis O (n?d*k log d). O

3.6.5 EfficientImplementationgor the GeneralizedRatio Objective

In Section 3.6.1-3.6.2 we obtain efficient randomized and deterministic implementations of pro-
portional volume sampling with measurewhen ;. is a hard-core distribution over all subsets

S € U (whered € {Uy, U< }) with any given parametex € R”'. Both implementations run in
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O (n'dk?*log(dk)) number of arithmetic operations. In Section 3.6.3-3.6.4, we obtain efficient ran-
domized and deterministic implementations of proportional volume sampling over exponentially-
sized matrixiV = [w; ;] of m vectors containing. distinctvectors inO (n?d*k log d) number of
arithmetic operations. In this section, we show that the results from Section 3.6.1-3.6.4 generalize

to proportional-volume sampling for generalized ratio problem.

Theorem 3.6.11.Letn, d, k be positive integers\ € R, U € {Up, U<}, V = [v1,...,0,] €
R™>" and0 < I’ < | < d be a pair of integers. Let’ be thel-proportional volume sampling
distribution over/ with hard-core measurg of parameter), i.e. 1//(S) o< A9 E, (VSVST) for all

S € U. There are

+ an implementation to sample fropd that runs inO (n'lk*log(lk)) number of arithmetic

operations, and

» a deterministic algorithm that outputs a s&t € I/ of sizek such that

TV o7 TN o7
(Ey(vs»fVS*))” > (EZ/WsVs))”] (3.37)
/\/M/

Ey(Vs-Vi.) E(VsVy)

that runs inO (n'lk? log(Ik)) number of arithmetic operations.

Moreover, letV = [w; ;] be a matrix ofn vectors wherev; ; = v; for all i € [n| andj. Denotel/
the index set ofl/. Let ' be thel-proportional volume sampling over all subséts_ U of sizek

with measure: that is uniform, i.ey/(S) < E, (WsW{ ) forall S C U,|S| = k. There are

« an implementation to sample fropi that runs inO (n?(d — [ + 1)I?d*k log d) number of

arithmetic operations, and

» a deterministic algorithm that outputs a st € I/ of sizek such that

Er(WsWI)\ ™7
(has) 38)

TN o7
(Ez'(WS*Ws*))” > E
EZ(WS*W;F) Sy
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that runs inO (n? ((d — I' + 1)I”” + (d — I + 1){?) d®k log d) number of arithmetic opera-

tions.

As in Observation 3.6.3, note that we can replace k + d2 in all running times in Theorem
3.6.11 so that running times of all variants of proportional volume sampling are independent of
We also note, as in Remark 3.6.9, that running timesmoportional volume sampling oven
vectors withn distinct vectors has an extra factor lofog m after taking into account the size of

numbers in computation, allowing us to do sampling over exponential-sized groumd set

-
Proof. By the convexity off(z) = 2!~ over positive reals, we haveE [X] > (E [X ﬁ])

for a nonnegative random variahle. Therefore, to show (3.37), it is sufficient to show that

Ey(Vs-V4h) Er(VsVs) } (3.39)

TS TS)
El(VS*VSI) T S~ [EZ(VSVST)

That is, it is enough to derandomized with respect to the obje%%, and the same is true
for showing (3.38). Hence, we choose to calculate the conditional expectations with respect to this
objective.

We follow the exact same calculation feproportional volume sampling for generalized ratio
objective as original proofs of efficient implementations of all four algorithm4-mptimal objec-
tive. We observe that those proofs Aroptimal objective ultimately rely on the ability to, given

disjoint/, J C [n] (or in the other caséjn|), efficiently compute

X% D det(VeVig)and > AT > det(ViVp)

Seu,ICS,JNS=¢  |R|=d,RCS Seu,1CS,JNS=¢  |T|=d—1,TCS

(or in the other case, repladéwith 1 and\® = 1 for all S). The proofs for generalized ratio

objective follow the same line as those proofs of four algorithms, except that we instead need to
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efficiently compute

S TTT et(Vp Vi
Z 2\ Z det(V, V) and Z 25 Z det(Vh Vi)

Seu,ICS,JNS=¢ |T|=l,RCS Seu,ICS,JNS=¢ |T"|=l'T'CS

(note the change ok, T" of sized,d — 1 to T, T’ of sizel,l’ respectively). But the computations
can indeed be done efficiently by using differépt= [’, [ instead ofd, = d — 1, d when applying
Lemmas 3.6.1, 3.6.6, and 3.6.7 in the proofs and then following a similar calculation. The proofs

for running times arédentical. ]

3.7 Integrality Gaps

3.7.1 Integrality Gapfor £-Optimality

Here we consider another objective for optimal design of experiments;-thigimal design objec-
tive, and show that our results in the asymptotic regime do not extend to it. Once again, the input
is a set of vectors,, . .., v, € R?, and our goal is to select a S&tC [n] of sizek, but this time we

minimize the objective| (Y, s viv;")~*||, where]| - || is the operator norm, i.e. the largest singu-

lar value. By taking the inverse of the objective, this is equivalent to maximixiy_, g viv; ),
where\;(M) denotes theth smallest eigenvalue af/. This problem also has a natural convex

relaxation, analogous to the one we use forAhebjective:

max \; (Z xiviv;) (3.40)
i=1

S.t.
> =k (3.41)
=1
0<uz;<1 Vie€]ln] (3.42)

We prove the following integrality gap result for (3.40)—(3.42).
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Theorem 3.7.1.There exists a constant> 0 such that the following holds. For any small enough
e > 0, and all integersd > dy(e), if & < i—gl then there exists an instanog, . ..v, € R? of the
E-optimal design problem, for which the valGe of (3.40)}«3.42)satisfies

CP > (14+¢€¢)OPT=(1+¢) Sgﬁ%ﬁ:k A1 (; Ui’l):)

Recall that for thed-objective we achieve él + ¢)-approximation fork = Q(¢ + bgi#).
Theorem 3.7.1 shows that such a result is impossible forubjective, for which the results
in [ALSW17b] cannot be improved.

Our integrality gap instance comes from a natural connection to spectral graph theory. Let us
first describe the instance for any givénWe first definen = (') vectors inR**!, one for each
unordered paiti, j) € (I*}). The vector corresponding (@, 5), i < j, is u;; and has valué
in the i-th coordinate—1 in the j-th coordinate, an@ everywhere else. In other words, thg
vectors are the columns of the vertex by edge incidence matokthe complete grapk’,,,, and
UUT = (d+ 1)I441 — Jyq1 is the (unnormalized) Laplacian &f,,,. (We usel,, for them x m
identity matrix, and/,, for them x m all-ones matrix.) All theu;; are orthogonal to the all-ones
vector1; we define our instance by writing; in an orthonormal basis of this subspace: pick any
orthonormal basis,, . . . , b; of the subspace d&?*+! orthogonal tol, and definey;; = BTu,»j for

B = (b;)L,. Thus
d+1 d+1

M=) vl =(d+ 1)

i=1 j=i+1
We consider the fractional solutian= (M) 1,i.e. each coordinate ofis k/(“}"). ThenM (z) =
S St wivygv) = 21, and the objective value of the solution?s

Consider now any integral solutioft C ([d;”) of the F-optimal design problem. We can
treat.S as the edges of a gragh = ([d + 1],.5), and the LaplaciarL. of this graph isLs =

> (ij)es u;;u;;. If the objective value of5 is at most(1 + ¢)CP, then the smallest eigenvalue of
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M(S) = 3 jyes vijviy is atleastzis > (1— ). SinceM (S) = BT L B, this means that the

second smallest eigenvalue b; is at least(1 — €)2. The average degre® of G is 2% d+l So, we

have a grapli- ond + 1 vertices with average degréefor which the second smallest eigenvalue

of its Laplacian is at leastl — ¢)(1 — m)A > (1 — 2¢)A, where the inequality holds fatlarge
enough. The classical Alon-Boppana bound ([Alo86, Nil91]) shows that, up to lower order terms,
the second smallest eigenvalue of the Laplacian Afr@gular graph is at most — 2v/A. If our

graphG were regular, this would imply thaﬁ% =A> 6% In order to prove Theorem 3.7.1, we
extend the Alon-Boppana bound to not necessarily regular graphs, but with worse constants. There
is an extensive body of work on extending the Alon-Boppana bound to non-regular graphs: see the
recent preprint [ST17] for an overview of prior work on this subject. However, most of the work
focuses either on the normalized Laplacian or the adjacency matéx ahd we were unable to

find the statement below in the literature.

Theorem 3.7.2.Let G = (V, E) be a graph with average degre® = 2”5" and let Lg be its
unnormalized Laplacian matrix. Then, as long/ss large enough, angl/| is large enough with
respect ta,

)\Q(LG) S A — C\/Z7
where), (L) is the second smallest eigenvaluelef, andc > 0 is an absolute constant.

Proof. By the variational characterization of eigenvalues, we need to find a unit veaiahogo-
naltol, suchthat:" Loz < A — cv/A. Our goal is to use a vectarsimilar to the one used in the
lower bound on the number of edges of a spectral sparsifier in [BSS12b]. However, to apply this
strategy we need to make sure tltahas a low degree vertex most of whose neighbors have low
degree. This requires most of the work in the proof.

So that we don't have to worry about making our “test vector” orthogona| ttoserve that

Ao(Lg) = min v Lo (3.43)
T serv aTx — (1T2)2/|V| '
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Indeed, the denominator equalSy for the projectiony of = orthogonal tol, and the numerator
is equal toy " Lgy. Here, and in the remainder of the proof, we workiH, the space ofV/|-
dimensional real vectors indexed by and think of L as being indexed by as well.

Observe that if7 has a vertex of degreeA(u) at mostA — %\/Z we are done. In that case

we can pickz € RY such thatr,, = 1 andz, = 0 for all v # u. Then

t" Lex _ Z(u,U)EE (T — xv)Q < A — %\/Z
e —(1Tz)?/n 1—ﬁ - 1—|—‘1/| ’

which, by (3.43), implies the theorem for all large enouligh Therefore, for the rest of the proof
we will assume that\(u) > A — /Aforallu € V.

DefineT = {u € V : A(u) > A + 1V/A} to be the set of large degree vertices, and let
S =V \T. Observe that

VIA > |T)(A + 5VA) +18](5 - 15 VA)

1 1
= VA + (GIT] = 515N VA.

Therefore|S| > 5|T

, and, sincd” andS partitionV/, we have S| > 2|V|.

Define

« = min HUNUZUGTH:UGS ,
A — LA

10
wherev ~ u means that is a neighbor of,.. We need to find a vertex ifi such that only a small
fraction of its neighbors are ifi, i.e. we need an upper bound @nTo show such an upper bound,

let us defineZ(S, T') to be the set of edges betwegmndT’; then

1 1 5) 1
—A|lV|=|E| > |E(S,T) > A——VA|>- All-——.
AV =18 2 [T 2 18l (4~ gVE) 2 Ve (1- <)

3 1 1
Thereforep < 2(1 — 10\/Z) .
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Letu € S be a vertex with at mostA — £+/A neighbors iril’, and let§ = |{v ~ u : v € S}|.

By the choice ofu,

52A(u)—aA+%\/Zz(1—a)A<1—#>

10 \F
We are now ready to define our test vectaand complete the proof. Let, = 1, z, = \/LS for

Assume that\ is large enough so th{tl — ) > 18 Then,§ > 8(1 — a)A.
any neighbow of u which is in S, andz,, = 0 for anyw which is inT" or is not a neighbor of..

We calculate

TLGx—|{v~u UGS}](1—7> +H{v~u:veT} + Z Z

v~UWES WA w;éu

1\?2 1
< - — — —
_5(1 \/5> A =0+ A+ VA1

where we used the fact for anye S, A(v) < A+ %\/Z by definition of S. The right hand side
simplifies to

Alu) — 2V + A+ \/_<2A ( (1—a)— ;)\/Z

Sincea < 2(1 - 10\1/5)_1, 2/(1 —a)—1 > 4 forall large enoughy, and by (3.43), we have

xT o 1\/_ \/Z -1
X(G) € — _L(lTx) < ; (1 - 1;\{) (A — i\/z> (1 1 ';L\Vl )

The theorem now follows as long 88| > C'A for a sufficiently large constaidt. ]

To finish the proof of Theorem 3.7.1, recall that the existence(dfiac)-approximate solution
S to our instance implies that, for all large enoughthe graphG = ([d + 1], S) with average
degreeA = d+1 satisfies\o(L¢) > (1 — 2¢)A. By Theorem 3.7.2\5(L¢) < A — ¢/ A for large
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enoughd with respect ta\. We haveA > % and re-arranging the terms proves the theorem.
Note that the proof of Theorem 3.7.2 does not require the gfaph be simple, i.e. parallel
edges are allowed. This means that the integrality gap in Theorem 3.7.1 holds forotmal

design problem with repetitions as well.

3.7.2 Integrality Gapfor A-optimality

Theorem 3.7.3.There exists an instance of the A-optimal design. ., v, such that

k

PTG =y

— 5)CP

foranyd > 0.

This implies that the gap is at Ieaﬁ(’;’—ﬂ. The theorem statement applies to both with and

without repetitions.

Proof. The example, ..., v, will be the same for the problem either with or without repetitions.
Pick v; to be paralleled to axisfor eachl < i < d. We will set the rest;, 7 > d to be at leask
copies of each of these for : < d, as we can pick as big as needed. Hence, we may assume
that we are allowed to pick only;, ¢ < d, but with repetition.

Choosey; = N -¢; foreachi=1,...,d — 1, andv,; = ¢;. AS N — oo, the fractional optimal

solution (can be calculated by Lagrange’s multiplier techniquey is- (Jo, do, - .., 00,k — (d —

1)6o) for a very smalb, = m. The optimal integral solution ig* = (1,1,...,1,k—d+1).
d— d—

We haveCP - 50_]\17 —|— Wl—l)ﬁo — %, and OPT: Tl —|— k_(11+1 — k—zl—i-l' Hence,

OPT k
— .
CP E—d+1

72



3.8 Hardness of Approximation

In this section we show that thé-optimal design problem i&lP-hard to approximate within a
fixed constant whe = d. To the best of our knowledge, no hardness results for this problem
were previously known. Our reduction is inspired by the hardness of approximatiérdptimal
design proved in [SEFM15]. The hard problem we reduce from is an approximation version of
Partition into Triangles.

Before we prove our main hardness result, Theorem 3.1.8, we describe the class of instances we
consider, and prove some basic properties. Given a graph([d], £'), we define a vector, for
each edge = (i, j) so that its-th andj-th coordinates are equal tpand all its other coordinates
are equal td). Then the matrid” = (v.).c IS the undirected vertex by edge incidence matrix of

G. The main technical lemma needed for our reduction follows.

Lemma 3.8.1.LetV be the vertex by edge incidence matrix of a grépk- ([d], £), as described
above. LetS C E be a set ofd edges ofG so that the submatri¥s is invertible. Then each
connected component of the subgrdph-= ([d], S) is the disjoint union of a spanning tree and an

edge. Moreover, if of the connected componentsibfare triangles, then

o fort =4, tr((VeVy )™ =24,

e for anyt, tr((VsVd )™1) > d — 3.
Proof. Let Hy, ..., H. be the connected componentsiéf First we claim that the invertibility

of Vs implies that none of thé, is bipartite. Indeed, if somé/, were bipartite, with bipartition

L U R, then the nonzero vectardefined by

(

1 1€ L

T,=4-1 1€R

0  otherwise
\
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is in the kernel ofVs. In particular, eacti{, must have at least as many edges as vertices. Because
the number of edges @f equals the number of vertices, it follows tleaeryconnected component

H, must have exactly as many edges as vertices, too. In particular, this means thdi eisettye
disjoint union of a spanning tree and an edge, and the edge creates an odd-length cycle.

Let us explicitly describe the invers& '. For eache € S we need to give a vectar, € R¢ so
thatu! v, = 1 andu/v; = 0 foreveryf € S, f # e. ThenU" = V!, whereU = (u.).cs is the
matrix whose columns are the vectors. LetH, be, as above, one of the connected components of
H. We will define the vectors, for all edges: in Hy; the vectors for edges in the other connected
components are defined analogously. Cebe the unique cycle aff,. Recall thatC, must be an
odd cycle. For any = (i, j) in Cy, we set the-th and thej-th coordinate of., to % LetT be the
spanning tree off, derived from removing the edge We set the coordinates aof corresponding
to vertices of H, other thani and j to either—% or +§, so that the vertices of any edge Bf
receive values with opposite signs. This can be done by setting the coordinateasfesponding
to vertexk in H, to $(—1)°v("¥) wheredr (i, k) is the distance if” between: andk. Because
Cy is an odd cyclegr (i, j) is even, and this assignment is consistent with the values we already
determined fori andj. Finally, the coordinates af. which do not correspond to vertices &f
are set td). See Figure 3.1 for an example. It is easy to verify that. = 1 andu_v; = 0 for
any edgef # e. Notice that||u.[|3 = %, whered, is the number of vertices (and also the number

of edges) ofH,.

Figure 3.1: The values of the coordinatesipfor e € C,.

It remains to describe, whene = (i, j) ¢ C,. LetT be the tree derived frorfl, by contracting
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C, to a vertexr, and set- as the root of/". Without loss of generality, assume thas the endpoint
of e which is further fromr in 7. We set the'-th coordinate ofi, equal tol. We set the coordinates
of u. corresponding to vertices in the subtreelobelow ; to either—1 or +1 so that the signs
alternate down each path frojnto a leaf of 7" below j. This can be achieved by setting the
coordinate ofz, corresponding to vertekto (—1)°70:F), wheredr(j, k) is the distance betwegn
andk in T'. All other coordinates ofi. are set equal t6. See Figure 3.2 for an example. Notice

that||u.||? > 1 (and in fact equals the number of nodes in the subtré&é lmélow the nods).

Figure 3.2: The values of the coordinatespfor e ¢ C,.

We are now ready to finish the proof. Clearly[ifi can be partitioned into = g disjoint

triangles, and the union of their edgesSisthen

- 3|8 3d
e((VoVd) ™) = (0T = Y iy = 2 = 3
eeS
In the general case, we have
tr((VsVg ) ™) = tr(UUT) = Z e 2
ecS
~ |y - dy
= +dy—|C
- zz:; 4 ¢ | e|

9t 3t
> —4+d—-3t=d— —
_4+ 1

where|C,| is the length ofC,, andd, is the number of edges (and also the number of vertices)

in H,. The final inequality follows because any connected compofenthich is not a triangle
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contributes at least, to thesum. ]

Recall that in the Partition into Triangles problem we are given a géaph(V, E), and need
to decide ifi¥ can be partitioned intévgl| vertex-disjoint triangles. This problem MP-complete
([GJ79] present a proof in Chapter 3 and cite personal communication with Schaeffer), and this,
together with Lemma 3.8.1, suffice to show that th@ptimal design problem iBlP-hard when
k = d. To prove hardness of approximation, we prove hardness of a gap version of Partition into
Triangles. In fact, we just observe that the reduction from 3-Dimensional Matching to Partition
into Triangles in [GJ79] and known hardness of approximation of 3-Dimensional Matching give

the result we need.
Lemma 3.8.2.Given a graphG = (W, E), itis NP-hard to distinguish the two cases:

1. W can be partitioned inté‘g—/' vertex-disjoint triangles;

wi
3 )

2. every set of vertex-disjoint triangles@hhas cardinality at most
wherea € (0,1) is an absolute constant.

To prove Lemma 3.8.2 we use a theorem of Petrank.

Theorem 3.8.3([Pet94]) Given a collection of tripled’ C X x Y x Z, whereX, Y, andZ are
three disjoint sets of size& each, and each element &fU Y U Z appears in at most triples of

F, itis NP-hard to distinguish the two cases

1. there is a set of disjoint tripled/ C F' of cardinalitym;

2. every set of disjoint tripled/ C F' has cardinality at mostm,
wheres € (0, 1) is an absolute constant.

We note that Petrank gives a slightly different version of the problem, in which th&/9st

allowed to have intersecting triples, and the goal is to maximize the number of elefernts) 7
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that are covered exactly once. Petrank shows that it is hard to distinguish between the cases when
every element is covered exactly once, and the case when at3moestlements are covered

exactly once. It is immediate that this also implies Theorem 3.8.3.

Proof of Lemma 3.8.2 We will show that the reduction in [GJ79] from 3-Dimensional Matching

to Partition into Triangles is approximation preserving. This follows in a straightforward way from

the argument in [GJ79], but we repeat the reduction and its analysis for the sake of completeness.
GivenF' C X UY UZ such that each element &fUY U Z appears in at mosttripes of /', we

construct a graply = (W, E') on the vertices UY U Z and9|F'| additional verticesuy, ... ayg

for eachf € F. For each triplef € F', we include inE' the edged”; shown in Figure 3.3. Note

that the subgraphs spanned by the ggtsE, for two different triplesf andg are edge-disjoint,

and the only vertices they share areXnJ Y U Z.

ars are ar9
afi afz' afq ‘af7 afs
CLf5
X Yy z

Figure 3.3: The subgraph with edggs for the triple f = {z,y, z}. (Adapted from [GJ79])

First we show that iff" has a matching/ covering all elements ok U Y U Z, thenG can
be partitioned into vertex-disjoint triangles. Indeed, for efch {z,y, 2z} € M we can take the
triangles{x, as1,ar}, {y,ars, ars}, {2, ap7,aps}, and{ayss, ase, ape}. FOr eachf ¢ M we can
take the triangle$as, aro, ars}, {asa, a5, a6}, and{asr, ars, apo}.

In the other direction, assume there exists dset at Ieas‘a@ vertex disjoint triangles i,
for a value ofa to be chosen shortly. We need to show thatontains a matching of at leastn

triples. To this end, we construct a sSgtwhich contains all tripleg, for eachZ; which contains
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at least! triangles ofI’. Notice that the only way to pick three vertex disjoint triangles frBimis
to include the lower three triangles (see Figure), so any two tripksdg in M must be disjoint.

The cardinality of" is at mosti| M| + 3(|F'| — |M]|) = |M| + 3|F|. Therefore,
w
M|+ 3|F| > a|—3’ = a(m + 3|F)),

and we haveM| > am — (1 — «)3|F| > (10a — 9)m, where we used the fact thgt| < 3m
because each element®fappears in at mosttriples of F. Then, ifac > 9%05 we haveg M| > fm.

This finishes the proof of the lemma. O

We now have everything in place to finish the proof of our main hardness result.

Proof of Theorem 3.1.8 We use a reduction from (the gap version of) Partition into Triangles
to the A-optimal design problem. In fact the reduction was already described in the beginning of
the section: given a grapghl = ([d], F), it outputs the columns, of the vertex by edge incidence
matrix V' of G.

Consider the case in which the vertices(étan be partitioned into vertex-disjoint triangles.
Let S be the union of the edges of the triangles. Then, by Lemma 3:8(1sVy )~!) = 22

Next, consider the case in which every set of vertex-disjoint trianglés s cardinality at
mostag. Let S be any set ofl edges in~ such thatls is invertible. The subgrapl = ([d], S)
of G can have at mosﬂyg connected components that are triangles, because any two triangles
in distinct connected components are necessarily vertex-disjoint. Therefore, by Lemma 3.8.1,
tr((VsVg) ™) > B,

It follows that ac-approximation algorithm for the-optimal design problem, for any< 4*7‘1

can be used to distinguish between the two cases of Lemma 3.8.2, and, therefereytimal

design problem i8lP-hard toc-approximate. O
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3.9 Regularized Proportional Volume Sampling for Ridge Regression

In this section, we consider the problem of optimal design with a regularizer cadigel regres-
sion, and extend the sampling algorithms #optimal design to ridge regression. We first start

with the background and motivation of ridge regression.

3.9.1 Background

Notations

We recall notations used throughout this thesis. et [v; ... v,] be thed-by-n matrix of vectors
v; € R Thesey;’s are also called datapoints. We want to select a subsein| of sizek so that
learning the model with label of is as efficient as possible. L&t = [v;];cs be a matrix with
columnsu;,i € S. Lety be the label column vector, and is thek x 1 column vector(y; );cs. We

denoteX as the datapoints we want to predict, which is most cases is the sdme as

Linear Model Assumption

In optimal design throughout the thesis, we assumegthatz; w* + n; wherer); are independent
Gaussian noise with mean zero and same variance. In this section, we note that we may also
assume is a random Gaussian vectdr(0, Cov (n)) with Cov () < ¢*I. Under this assumption,
the errors to be presented in this section is upper bounded by in the settingmheke(0, o21).
Hence, for simplicity we assumg~ N (0, 0*1) as earlier.

After obtaining labelg)s, we are interested in fitting linear modék by minimizing square

loss with a regularizer with parametir
g = argmin { ||ys — Vg w3 + Aljwl[3} (3.44)

wERL

This problem is calledidge regressionand whem = 0, the problem reverts to linear regression.
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Table 3.4: Distributions of model and prediction errors in ridge regression

Errors g — w* X7 (g — w")

A=0 =N (0.0% (vs¥d) ") = N (0.0°XT (vsVd) ' X)

=0 = N(=AZs(\)'w, = N(=AXTZs(\) ',
0?[Zs(N\) 1= AZs(N)7?) | X [Zs(N) ! = AMs(M) ] X)

It is also known that the above ridge regression is equivalent to linear regression under Gaussian
prior assumption. Ridge regression with> 0 increases the stability the linear regression against
the outliar, and forces the optimization problem to have unigue solution even when datapoints in

V' do not span full-ranki.

Model Error and Prediction Error

In order to motivate a good objective for subset selection problem, we calculate the model error
g — w* and prediction erroX " (s — w*) when the predictor is used to predict datapoikits
In many applications, the matric of error conceiso be the same ds. These errors are random
with distributions summarized in Table 3.4.

The calculations used to obtain distribution in Table 3.4 is similar in each of four cases. Here
we will compute only one examplé&l' " (ws — w*). This example is the most complicated one of
the four, and enough to guide the reader to obtain other three.

DenoteZs()) := (VsVy + AI). We first state a simple claim that will help in this calculation.

Claim 2. For a fixed matrixA and a random vectof, we haveCov (AZ) = ACov (Z) AT,
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Proof. Denotem = E[Z], the mean vector af. Then, the mean oflZ is Am. We now have

Cov(AZ) =E[(AZ — Am)(AZ — Am)"]
=E[A(Z —m)(Z —m)"AT]
= AE[(Z —m)(Z —m)T] AT

= ACov(Z)AT

We now show how to obtain the distribution &' (1g — w*).

Claim 3. We have
X (s —w*) = N(=AX"Zg(\) w0’ X " [Zs(A) ' = AZs(N)?] X)

Proof. We split calculations into the following steps.

1. Find closed-form solution af 5 by taking the gradient:

s = Zs(A)'Vsys (3.45)

2. Substitutingy; from the linear model assumption. This finishes obtaining the distribution of

model error.

21)5 —w* = ZS()\)_1VSZ/5 —w*
= Zs(\) W5 (V4§ w* +ng) — w*
= Zs(\) ' [Zs(Nw* — (A w* + Vgng] — w*

= —AZs(\) w4+ Zg(A) " Vans
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Table 3.5: Expected square loss of model and prediction errors in ridge regression

Errors E [[is — w'[}] E [IXT (s — w)[E]
)\:O :O_QtrVSVS - :UQtFXT (VSVST)ilX
A>0 :02trZs()\)‘1
- —A{Zg(N)7%, 0% — Mwrw*T) =2 tr XTZs(\) ' X
M Zs(N)'XXTZs(N) 7, 0%T = dw*w* ")

3. To obtain prediction error, we simply left multiply by the data matrix:

X' (g —w*) = =AX " Zs(\)tw* + X T Zg(\) " Vang

4. Linear transformation of random Gaussian vectors is Gaussian, so we use the claim above to

get that the mean of prediction error is
IxT (s —we) = —AX | Zg(A)'w* (3.46)
and the covariance is

Cov (X7 (g —w*)) = X Zs(A) Vs Cov (ns) (X Zs(A)'Vs) |
= X" Zs(\)"Ws Cov (ns) V4 Zs(N\) 71X
< ? X" Zs(\) WV Zs(N) X

=’ X" [Zs(\)' = AZs(\) ] X
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Expected Square Loss of Ridge Regression Predictor

There are several metric to minimize the error distribution. One common metric is expected square
loss under the distribution. We can find this expectation as follow(s). First, we calculate expected

square-loss of model error:

d
E [|lds - wl3] = 3B [((ts): = (w):)’]
= 3 (BlGs) - (w4 Var (ash - (w)0)

= ||E [wg — w*]||§ + tr Cov (g — w")
n

where we us& [X?] = E [X]* + Var (X) (bias-variance decomposition). Similarly, for prediction

error,

E[IXT (s —w)llg] = DE[I(XT () — (w),)]]

As we know mean and variance of the model and prediction errors (Table 3.4), we can substitute

those means and variances:

E [llds — wrlls] = I=AZsN) "l + tro® [Zs(N) ™ = AZs(N) 7]
= \? <ZS()\)_2,w*w*T> + o tr Zg(A) 7t = Ao? tr Zg(\) 2

— o2 tr Zg(A) ! — A <ZS(/\)*2, o2 — /\w*w*T>
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The challenge is the second-order teffm(\) 2. One way to address is to consider only the
first-order termr ZS()\)—l. For example, [DW17a] assume that the regularizatiamsufficiently

small: that\ < In such case, we havev*w*" < ¢2I. Then,

T3 *Hz

E [lis — w*|3] < o tr Zg(N) ™! (3.47)
ns

where the right-hand side now contains only the first-order tetdfy (1)~ which can be optimized
by sampling-based algorithms. Note that it is an open question to directly bound the expected loss
without any assumption oh.

For prediction error,

E [[IX T (s —w)|)3] = |-AXTZs(A) 'w*|)3 + tro® X T [Zs(A) ™ = AZs(N) %] X
— 32 <ZS(/\)‘1XXTZS(/\) ! w*w*T> o2 tr X T Zs (V) 71X — Ao tr X T Zs(\)2X

— o2 tr X Zs(A)1X — A <ZS(/\)*1XXTZS(>\)* 02T — hw*w *T>
Again, if we assume that < T *”2, then we havew*w* " < ¢2I. Then,
E[|XT (s —w")|3] <o*tr X Zg(N)'X (3.48)
n

The bound (3.47) is the analog of tAeoptimal design objective, and is the motivation for the

ridge regression objective to be considered in the next subsection.
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3.9.2 \-ReularizedA-Optimal Designand A\-RegularizedProportional Wlume Sampling

In this section, we consider an approximation algorithm to the optimization problem that, given

V =[v;...v,] € R™" integerk > d, and)\ € R, solve

Eq1Zs(N)

min 3.49
scinllSl=k EyZs(\) o

whereZs(\) := VsV4 + M. Though this objective is motivated from the square loss from ridge
regression (see Table 3.5), it is not the same objective. However, if we assgnﬂng%, then the
loss is bounded above b%;lzi%(?) Due to this motivation and its similarity with objective from
A-optimal design, we call problem (3.49)regularizedA-optimal design.

Denoteld;, (U<,) the set of all subsetS C [n] of sizek (of size< k). Given\ > 0,y €
R™ U € {Uy, U<}, andy a distribution ovetd, we define the\-regularized proportional volume
sampling with measurg to be the distributior.’ over i/ wherep/(S) oc wu(S)det Zg(\) for
all S € U . Giveny € R", we say a distribution: over/ is hard-core with parametet if
p(S) o 25 :=[],cq z: for all S € U. Denote|| A||» the spectral norm of matrid.

To solve A-regularizedA-optimal design, we solve the convex relaxation of the optimization

problem
. B (V(@)V(z)T + M) :
min Ea(V @)V (@) ) subject to (3.50)
> ai=k, (3.51)
i=1
whereV (z) = [\/z1v1...1/Z,vy]), tO get a fractional solution: € R”. Note that convexity

follows from the convexity of functlon’% over the set of all PSD matrice®l € R™*".

Then, we use\-regularized proportional volume sampling with hard-core meagunith some
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parametery € R™ which depends om to sample output € U/<,. The summary of the algorithm
is in Algorithm 3.4. The overall goal is to show that with= (2 <§ + bgi#) Algorithm 3.4 has

(1 + ———————)-approximation guarantee to solvingregularizedA-optimal design.

A
VI TV even

Algorithm 3.4 Solving minscy) jsi— “4-523> With convex relaxation and-regularized propor-
tional volume sampling
1: Given aninpul’ = [vy,...,v,] wherev; € RY, k a positive integer\ > 0

Eq_1(V(2)V(2)T+AI)
=k By (V(2)V(x)T+AI)

2: Solve to get a fractional solution € argmin,, ¢ yjn 17

) — T = £ T
3: Letz = g*- wheref =1 + 4\/1 T IV@VEn:

4: SampleS from i/ (S) oc 2% det Zg(\) for eachS € U,
5: OutputS (If |S| < k, addk — |S| arbitrary vectors te first).

Theorem 3.9.1.GivenV = [v;...v,] € R¥", integerk > d, and\ € R*, Algorithm 3.4 has

(1 + €)-approximation guarantee to solvingregularizedA-optimal design.

We note that the approximation ratio is in fact a slightly tighter fadter \/ﬁ as
will be shown later in this section. This ratio shows that the algorithm’s performance improves as
A increases, and is asymptotically optimalas» oco.

The proof of Theorem 3.9.1 relies on showing that proving an approximation guarantee of a
A-regularized proportional volume sampling with measunmeduces to showing a property an
which we calledhear-pairwise independencé&his reduction is explained in Theorem 3.9.4. We
then construct: based on fractional solutionand prove that: has such property in Section 3.9.5.

Finally, we note that our constructedis hardcore, and show that we can efficiently implement

A-regularized proportional volume sampling with amgrd-coremeasureu.

3.9.3 Related Work

Ridge regression or regularized regression is introduced by [HK70] to ensure a unique solution

of linear regression when data matrix is singular, i.e. when labeled datapoints do not span full
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dimensions. Ridge regression has been applied to many practical problems [MS75] and is one of

classical linear methods for regression in machine learning [HTF09].

A-regularized volume sampling. [DW17a] introduced\-regularized volume sampling and gave
theoretical guarantee bound for the model eBdjiis — w*||3], which equals ter (VsVy + )\I)_l,

s
the objective of focus in this section. We explain the similarity and difference of their guarantees

here. [DW17a] showed that f@ov () < o] and\ < —Z—

[[w ]2

o?n tr((VV T+ M)
k—dy+1

E [t (VsVd + D)7 < (3.53)
whered, = tr(VT(VV T+ XI)~1V) (recall thatn is the number of vectors to choose from). For
A =0, d\ = d, andd, decreases asincreases.

The bound (3.53) is different from our goal of approximation ratio in this thesis. Indeed,
suppose that™* is an optimal subset of the problem, then in expectation over the run of the our

algorithm,

d—1

A
(k—d+ 1)\/1 T vEveR

E [tr VsV + AI)_I} <|1+ec o2 tr((Ve- Vg + A1)

(3.54)

for some fixed constamnt(we assume is large compared t@ SO that% + bgi# =0 (g)) When

A = 0, our bound (3.54) simplifies to a bound similar to (3.53):

0'2]6 tr((VS*Vs*‘F/\I)il)
k—dy+1

E [tr (VsVy + AI)‘I} <

The main difference between our guarantee and ones by [DW17a] is that ours is in comparison
to the best possible subsgt, whereas (3.53) compares the performance to labelling the whole

original dataset.
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3.9.4 Reductionof Approxibility to Near-Rirwise Independence

In this section, we show that an approximation guarantee)efegularized proportional volume
sampling with measurg to A\-regularizedA-optimal design reduces to showing a propertyon
which we callednear-pairwise independencalNe first definenear-pairwise independencd a

distribution.

Definition 3.9.2. Let i be a distribution o/ € {U;,, U<, }. Letz € R}, We sayu is (c, o)-near-

pairwise independemith respect tae if for all 7', R C [n] each of size at most,

SPI’ [S 2 T} ,ZCT

OTH < aBIEITIZ 3.55

Pr SoR = IR (3.59)
~p

We omit the phrase "with respect 18 when the context is clear. Before we prove the main

result, we make some calculation which will be used later.

Lemma 3.9.3. For any matrix PSDX € R%*? anda € R,

d

Ey(X +al) => E(X)a"" (3.56)
=0
and
d—1
Ei (X +al)=)» (d—i)E(X)a™ " (3.57)
=0

Proof. Let A be eigenvalues ok. Then,

d
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proving the first equality. Next, we have

d
By (X +al) =) (\i +a)
J=1 i€[d],i#j
d d-1 d-1
= Z ei(A_j)a® 1 Z <Z el()\J)) ad=t
j=1 i=0 =0 \j=1

where\_; is A with one elemen); deleted. For each fixede {0,...,d — 1}, we have

S elA) = (d - (V) (3.58)

J=1

by counting the number of each monomiaki\). Notinge;(\) = E;(X) finishes theproof.

Now we are ready to prove the main result.

Theorem 3.9.4.Letx € [0,1])". Letu be a distribution o/ € {U, U<} that is (c, a)-near-
pairwise independent. Then theregularized proportional volume sampling with measureu

satisfies

-

[Edl (Zs )\))] <o Eqoq (V(z)V ()" + ) (3.59)
swir | Ea(Zs(\) Eq(V(x)V(2)T + a)l)
That is, the sampling givesyv-approximation guarantee taA-regularized A-optimal design in

expectation.

,Ed,l(V(x)V(x)TJra,\I) Ba_1(V(2)V () T+AT)
Note that by Ed(V(x)V(x)T+a)\I) — Ed(V(:{;)V(I)TJr)\I)

, (3.59) also implies«a-approximation
guarantee to the originatregularizedA-optimal design. However, we can exploit the gap of these
two quantities to get a better approximation ratio which converges to\l-asx. This is done in

Theorem 3.9.6.
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Proof. We apply Lemma 3.9.3 to RHS of (3.59) to get

Eqy (V(2)V(2)" + aX) 4 (d = W) ER(V (2)V (2)T)(ar)d 1"

E;(V(z)V(x)T + aXl) Z?:o Ey(V(z)V(2)T)(aX)d-*
_ S0 2orien (d = B) (@A) =R T det (Vi1 Vi)
Yo Y@ et det (V] Vi)

where we apply Cauchy-Binet to the last equality. Next, we apply Lemma 3.9.3 to LHS of (3.59)

to get

[Ed_l (ZS()\))] _ CseutMS) EalZsON TS S i(S) Ean Zs(N)
s~ | Eq(Zs(N)) > seutM(S)EaZs(A) > seu H(S)EaZs(A)

_ 2sau i) heold = h)Ey(VsV A1+

e nlS) S EuVsV At

B > seu M(S) ZZ;(l) > iri=nres(d— h)A R det (Vi Vr)

N > seu H(S) Z?:o Z|R\:Z,R§S A4t det (VRTVR)

B Zi;é 2o iri=h 2oseu,sor MS)(d — h)AT 1= det (V1 Vi)

N ZZ:O D |Rl= 2oseu,sor H(S)AT det (Vi Va)

Yo prienl(d = RIXT det (VI V) Pr[S DT

Z?:o > irje A1 det (VR Vr)

Pr
Srp
S 2 R

Pr
S~p

Eq_1(Z2s(\)
1| Egq(zs\V)

Therefore, by cross-multiplying the numerator and denominator, the B e v

Eg(V(z)V(x) T +all)

is

S0 Yomien Yoto Soymy—e(d — ) det (VI V) det (ViVi]) /\d_l_h(a)\)d‘%RF;r (S DT
O Y s S0 X re(d — ) det (VT Vi) det (VRV ) M—t(aX)?-1-haTPr [S D R

I

] A=1=h ()= RPr[SDT]
For each fixedh, T, ¢, R, we want to upper bounsz(M)d,l,wé‘r@m.

By the definition of
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near-pairwise independence (3.55),

d—1—h d—L4..R D)
A (CY)\) i F;r [S ) T] )\d—l—h(a)\)d—ﬁ —h

A—L(a) = 1=ha TPy [S D R] = Ad—L(aN)d-1-h co (3.60)
n
=o' et = ca (3.61)
|:Ed71(Z5</\>):|
Therefore, the ratig>= FalZs™) 1 s also bounded above . n

By 1(V(@V(@) T +arl)
Eg(V(z)V(x) T +aXI)

3.9.5 Constructinga Near-Rirwise-Independent Distribution

In this section, we want to construct a distributioron U<, and prove its {, a)-near-pairwise-

independent property. Our proposeds hard-core with parameterc R™ defined byz; := ﬂfix i

Pr [SDT)
(coordinate-wise) for some € (1, 2]. With this choice ofu, we upper bound the rat% in
S~p T

terms of 3. Later in Section 3.9.6, after getting an explicit approximation ratio in term loére,

we found that under the assumptibnr= 2 (% + bgi#) the choices =1 + i\/l + m

gives(1 + ——————)-approximation guarantee to Algorithm 3.4.

VI vEven
Lemma 3.9.5.Letx € [0,1]" such thaty " | z; = k. Lety be a distribution ori/<, that is hard-
core with parameter € R"™ defined by:; := ﬂf—m (coordinate-wise) for somg € (1,2]. Then,

forall T, R C [n] of sizeh, ¢ between 0 and, we have

Pr[S2T] (—h T
SISM SoR = . (B-Dk—pd)?\ o (3.62)
swru = 1 —exp <_T> x
Thatis,u is ( EEnTET ,ﬁ) -near-pairwise independent.
1fexp(fW>

Proof. Fix T, R of size0 < h,¢ < d. DefineB C [n] to be the random set that includes each

i € [n] independently with probability; /5. LetY; = 1[i € B] andY = > ... Y;. Then, noting
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thatz; = -%/2_ we have

l—xl/ﬁ’
PriSOT] PBOT B <K Pr[B 2T
= <
PriSO R~ PrBOR,|B<k ~ PrB2R,|BI <K
~p
- y—hg 1

xf Pr [Z%RYQ < k—ﬂ

Letz(R) = >,z - Then by Chernoff bound,

PrV >k — (] < exp (—((5 _315)55—??2))_ Bo) ) < exp <—((ﬁ — ?gk_ Bd) > (3.63)

which finishes theroof. ]

3.9.6 TheProofof theMain Result

The main aim of this section is prove thie + m)-approximaﬁon guarantee of the
A-regularized proportional volume sampling algorithm feregularizedA-optimal design. The
main result is stated formally in Theorem 3.9.6.

Lemma 3.9.5 shows that our constructeds (c, 3)-near-pairwise independent for some
dependent ors. Theorem 3.9.4 translates this property to th8)-approximation guarantee to
[BA-regularizedA-optimal design problem. However, this is a gap between the optimugh-of
regularizedA-optimal design and that of-regularizedA-optimal design. This gap obviously
depends o and is quantified in Claim 5. Therefore, we want to pitkmall enough to bound
(c¢)-approximation guarantee but also big enough to exploit this gap. The optimizatj@misof
done formally in Theorem 3.9.6, giving tiié + m)-approximation guarantee.

Before proving the main theorem, we first simplify the parametef (c, 5)-near-pairwise

independenj: that we constructed. The calculation shows that () (g + bgi#) is a right

condition to obtaire < 1 + .
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Claim 4. Lete > 0,3 > 1. Suppose

k> ;fdl + 3_51)2 log(1/¢) (3.64)
Then
exp (— G 1?22]{:_ ﬁd)2> <¢ (3.65)

Proof. (3.65) is equivalent to

(6= 1)k — Bd > /361og(1/€)k

which, by solving the quadratic equationvf¥, is further equivalent to

V/38log(1/€) + /33log(1/€') + 4(3 — 1)3d
V= 25— 1)

Using inequality,/a + vb < \/2(a + b), we have

V/3310g(1/¢) + /33Tog(1/¢) + 43— 1)3d _ /3310g(1/¢) +2(3 — 1)3d
2(6—1) - B—1

= —36 0 € ﬂ
_\/<ﬂ—1>21 s+ 5

so the result follavs. O

Next, we quantify the gap of the optimum @f\-regularizedA-optimal design and that of

A-regularizedA-optimal design.
Claim 5. Let M € R%*? be a PSD matrix, and let, A\ > 0. Then,

By (M +BN) _ L+ [0 Eay (M + M)
Eq(M+BX) ~ 14 Sy Ea(M + )
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A
TR 1 { P S PV{ P

Proof. Let~ be eigenvalues af/. Then,%w S Ml — T2

for all i € [d]. Therefore,

[1M]l2
Eqy (M +BA) _ i 1
Eq(M+BX) & 7+ O\
A d A
o 1 iR Eaa (M + M)
— A A
asdesired. ]

Now we are ready to state and prove the main result of this section.
Theorem 3.9.6.LetV = [vy,...,v,] € R*™ e € (0,1),A > 0,z € [0,1]" and suppose

10d
k> 10d + @ log(4/€) (3.66)
€ €

Denote) = m Then the\-proportional volume sampling’ with hard-core measurg

with parameter; := gf} - (coordinate-wise) witht = 1 + {v/1 + X satisfies

{Ed—l (Zs(\)) Byt (V(2)V(2)" + M) (3.67)
S~/ ’ |

By (Zs(V) } §<”¢—1+x> By (V(@)V ()T + M)

Therefore, Algorithm 3.4 gives + ﬁ)-approximation ratio to\-regularized A-optimal design

problem.

The approximation guarantee of Algorithm 3.4 follows franbeing a convex solution to the
A-regularizedA-optimal design, so the objective given bys at most the optimal integral solution

of the A-regularizedA-optimal design problem.
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Proof. Denotefy = 1 + <L andj, = 1 + <. By inequality (3.66),

10d ~ 60 od 15

k>—+ > log(4/€ + log(4/e 3.68
8(4/6) = 55— + 15— 17 84/ (3.68)
26yd 350
> + log(4/e 3.69
Bo—1 " (B 12 o8W/e) (3-69)
The last inequality is by, = 1+ § < 3. We have;; > ﬁﬁk’ and
G 1 1 VRN (VIENE VIEN VI
(Bo—1)2 fo—1 (Bo—1)* pByv—-1  (Bv—12" Bv—1  (Byv—1)2
BV G
(5X - 1)
Therefore, (3.69) implies
28vd 36y
k> + V14 Nlog(4/e 3.70
By Lemmas 3.9.54 is (¢, 3)-near-pairwise independent for= ’ ( (B{l)kfﬁd)fé,). We now use
—exp EERv: —
Claim 4 to bound:: with the choice of3 = gy ande’ = ()" "in Claim 4, we have: < T

from optimum ofg\-regularizedA-optimal design, i.e.

{szmz‘su))}< B B (V@)V(@)" + M) (3.71)

Ei(Zs(N\) | —1—=€¢ E;(V(x)V(x)T + BAI)
Now we apply Claim 5 to exploit the gap betweenandjA-regularizedA-optimal design:

Eq1 (V(z)V(z)" + BAI) P Ed 1 (V(2)V(2)" + BA)
E;(V(2)V(2)T+6X) ~— 1+6N  Ey(V(2)V(x)T + BAI)
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Therefore, Algorithm 3.4 gives approximation ratio of

ﬁ 1+)‘,_ ﬂ_l n—1 ﬂ_l n—1
T—¢ T4+8N (1+1+ﬁ)\’>(1_€) = (1+1+)\’) (1=

TTINT -1
Ase/4 < 1/e, we have the inequality = (<) Y < T/ Hence(1 — )7l < <1 — ﬁ) :
Thus, the approximation factor is at most
-1
(1+;><1—;) <14 (3.72)
41+ N 41+ N N V14N
where the inequality is by < 1. n

Note that we could have used fractional solutiofrom solving convex relaxation with reg-

ularizer )\ instead of)\ in Algorithm 3.4. This does not change the approximation ratio of the

x €T T
algorithm nor the proof, but in practice this gives a smaller valugd"‘*(v( V()T +5)

Ea(V(2)V(2)T+6A) to more

tightly bound the objective of the algorithm using (3.59).

3.9.7 Efficientimplementatiorof A\-RegularizedProportional \6lume Sampling

In this section, we show that-regularized proportional volume sampling can be implemented
in polynomial time. The deterministic counterpart and its generalized version that naturally fol-
lows Section 3.5.3X-regularized proportional-volume sampling — sampling with p/(S5)
25E,(VsV4 + M) to solve the generalized ratio objective with regularizer) can also be imple-
mented in polynomial time by following a similar argument.

The following is the main statement for efficient implementatiomeatgularized version of

proportional volume sampling. The standard counterpart was stated in Theorem 3.6.2.

Theorem 3.9.7.Letz € R}, vy,...,v, € RLX > 0,1 < k < n, U € {Uy, Ui}, andV =

[v1,...,v,]. Then there is a randomized algorithahthat runs inpoly(n, d) time which outputs
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S € U such that

25 det(VsVy + AI)
Pr[S=5] = s T
SNELX[ ] gy 2% det(VEVET + XI) #(S)

That is, the algorithm correctly implemenisregularized proportional volume sampling with
hard-core measurg oni/ with parameter:. The algorithm runs irO (n'dk?log(dk)) number of
arithmetic operations.

Moreover, there is an efficient derandomization of the algorithm. The algorithm also runs in

the same time complexity (n*dk? log(dk)) number of arithmetic operations.

Proof. The argument follows similarly with one in Theorem 3.6.2, with some modification of
calculation later in the proof. We sample by starting with an empty'set(). Then, in each step

1=1,2,...,n, decide with the correct probability

PriieS|ICS,JNS =10
S~/

whether to include in S or not, given the previous outcome. LEt= [ U {i}. This probability

equals to
SPr/[I’ CS,JNS =10
PrieSICS,JNS=0 ="
Srlieslies, 0) Prircsins=o
Np/

D seurcs, ns=o 2% det(VaVy + AI)

- Yseaurcsns—o » det(VsVy 4+ AT)

_ D Seu, 1'C8,InS=0 2 Zizo X > |Rj=h,RCS det(Vy V)
DU, 1CS, NS0 2 o AR > ri=nres det(Vy Va)

B ZZ:O AT D Seu,1'CS,InS=0 2° > _|Rj=h,RCS det(Vy V)

N S g Adh > seurcs,ins=0 %> 2 rj=n.rcs W€t (VR Vr)

where we apply Lemma 3.9.3 and the Cauchy-Binet formula in the third equality. Both the numer-

ator and denominator are sums over terms in the 88, 4cs jns-0 2° > rj=n.rcs det(Vy Vr)

for some setA C U« andh = 0,1,...,d. We have shown in the proof of Theorem 3.6.2 that
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a term in such form can be computed in polynomial time. More specifically, for gach
{I', I}, we compute polynomiaF(t,t,,t3) in Lemma 3.6.1 only once to find the coefficients
of the all monomialst®tdor!! for ky = 0.1.....k anddy = 0,1,...,d, giving the value of
5|5 mko ACS.INS=0 2 D Ri=do.rcs det(VR V) for eachko, do. Hence, the sampling can be
done both fod/ = U, (when we just need, = k), and forld = U<, when we need values for
ko = 1,2,... k. Computing polynomiaF (¢, t,, t3) takesO (n3dk? log(dk)) number of arithmetic
operations by Lemma 3.6.1 and is the bottleneck in each of tt@mpling steps, and hence the
total runtime isO (n*dk? log(dk)) number of arithmetic operations.

Derandomization can be done identically to obtain the same result as in Theorem 3.6.5. Gen-
erlization to/-volume sampling can be done identically to Theorem 3.6.11. The runtimes for
A-regularized counterpart are the same for both theorems. The modifications of proofs to obtain
the results are identical to the proof of Theorem 3.9.7. That is, to expand any terms in the form
E4(VsVg + ) (or E,(VsVy + ) for otherh’s) into polynomial in\ with coefficients in the form

Eq4,(VsV4 ), and use Lemma 3.6.1 to calculate all terms of interests fakaH 0, 1, .. ., d. [
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CHAPTER 4
COMBINATORIAL ALGORITHMS FOR OPTIMAL DESIGN

4.1 Introduction

One of the classical optimization methods that is used for optimal design problems is the local
search heuristic which is also called the Fedorov’s exchange method [Fed72] (see also [MMJ70]).
The method starts with any set bfexperiments from the given set efexperiments and aims

to exchange one of the design vectors if it improves the objective. The ease in implementing the
method as well as its efficacy in practice makes the method widely used [NM92] and implemented
in statistics softwares such as SAS (see [ADTO07], Chapter 13). Moreover, there has been consid-
erable study on heuristically improving the performance of the algorithm. Surprisingly, theoretical
analysis of this classical algorithm has not been performed despite its wide usage. In this thesis,
we bridge this gap and give theoretical guarantees on the performance of local search heuristic for
D and A-optimal design problems. In addition to local search, we analyze the greedy heuristic for

the D and A-optimal design problems.

4.1.1 Main ApproximationResultsof Combinatorial Algorithms

Our main contribution is to prove worst case bounds on the performance of simple local search
algorithm (also known as Fedorov Exchange method) and greedy algorithms. Our results also give
worst case performance guarantee on the variants of local search algorithm.

Our first result is for theD-optimal design problem where we show the following guarantee.
We consider both settings when the design vectors are allowed to be repeated in the solution and

when they are not allowed to be repeated.
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Theorem 4.1.1.For anye > 0, the local search algorithm returns(@ + ¢)-approximate solution

for D-DESIGN with or without repetitions whenevér> d + ‘f

Our analysis method crucially uses the convex relaxation foDHBESIGN problem. In recent
works, the convex relaxation has been studied extensively and various rounding algorithms have
been designed ([WYS16, ALSW17b, SX18, NST19]). Solving the convex relaxation is usually
the bottleneck in the running time of all these algorithms. Our results differ from this literature in
that we only use the convex relaxation for the analysis of the local search heuristic. The algorithm
does not need to solve the convex program (or even formulate it). We udedhéttingapproach
to prove the guarantee. We also remark the above guarantee improves on the best previous bound,
that gave(1 + €)-approximation fork = 2 (% + eiglog %) and so had an additional additive term of
+log 1 in the requirement on the size bf

We also consider the natural greedy algorithm ABIDESIGN problem. Indeed this algorithm
has also been implemented and tested in empirical studies (see for example [ADT07], Chapter 12)
and is referred to as the forward procedure algorithm. The algorithm is initialized to a small set
of experiments and new experiments are added greedily. We show that the guarantee is slightly
specific to the initialized set. If the initialized set is a local optimum set of éjage obtain the

following result. Again we employ the dual-fitting approach to prove the bounds.

Theorem 4.1.2.For anye > 0, the greedy algorithm foD-DESIGN with repetitions returns a

(1 + €)-approximate solution whenevir> Q (¢ (log 1 + loglog d)).

A-DESIGN. While the simple combinatorial algorithms have tight asymptotic guarantel for
DESIGN, we show that a similar guaranteannotbe proven forA-DESIGN. Indeed, there are
examples where local optimum can be arbitrarily bad as compared to the optimum solution as
we show in Section 4.3.3. We note that the bad local optima arise due to presence of long vectors
among design vectors. In particular, we show that this istigbottleneck to obtain an asymptotic

guarantee on the performance of the local search algorithm. Moreover, we show a combinatorial
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iterative procedure to truncate the length of all the vectors while ensuring that the value of the
optimal solution does not change significantly. This allows us to obtain a modified local search

procedure with the following guarantee.

Theorem 4.1.3.The modified local search algorithm fot-DESIGN with repetitions returns a

(14 €)-approximate solution whenevir= Q (4).

We note that the above asymptotic guarantee does not match the best approximation algo-
rithms [NST19] for A-DESIGN as was the case dP-DESIGN. Nonetheless, it specifically points
why local search algorithm performs well in practice as has been noted widely [ADTO7].

We also consider the natural greedy algorithm forAhBESIGN problem, which again requires
truncating the length of all vectors. As iR-DESIGN problem, the guarantee depends on the
initialized set. If the initialized set is a local optimum set of sigzdor an absolute constant we

obtain the following guarantee.

Theorem 4.1.4.The modified greedy algorithm fot-DESIGN with repetitions returns &1 + ¢)-

approximate solution whenevir> Q (4 log” 1).

Approximate Local Search: Theorem 4.1.1 and 4.1.3 show that the local searclVtf@ESIGN

and modified local search fot-DESIGNYyield (1 + €)-approximation algorithm. But, as are typical

of local search algorithms, they are usually not polynomial time algorithms. However, the standard
fix is to make local improvements only when the objectives improves by a factorof. With
appropriately chosed, this implies a polynomial running time at the cost of a slight degradation

in the approximation guarantee. We show that under the same assumption on pakarapter
proximate local search fap-DESIGN and modified approximate local search #HDESIGNyield

(1 + 2¢)-approximation whe is small enough and take polynomially many iterations.

Theorem 4.1.5.The (1 + ¢)-approximate local search algorithm fdp-DESIGN with repetitions

returns a(1 + 2¢)-approximate solution whenevér> d + ¢ andd < £, and the algorithm runs

in polynomial time.
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Theorem 4.1.6. The modified1 + §)-approximate local search algorithm fod-DESIGN with

repetitions returns g1 + 2¢)-approximate solution whenevér= Q (%) andé < £, and the

algorithm runs in polynomial time.

Runtime of approximate local search algorithms@ré”‘"“d3 logd tknd” log k ) whereL is the bit

biggest bit complexity of entries in input vectors (details are in Sections 4.6 and 4.7). We note that
approximate local optimum sets are sufficient for initialization of greedy algorithms, implying that

greedy algorithms run in polynomial time.

4.1.2 Related Work

Please refer to Related Work from previous chapter in Section 3.1.2.

4.1.3 Organization

In Section 4.2, we analyze the local search algorithm/#epESIGN and prove Theorem 4.1.1.

In Section 4.3, we analyze the modified local search algorithmAf@eSIGN and prove Theo-

rem 4.1.3. Sections 4.4 and 4.5 include details and proofs deferred from the main body of the
paper. We present approximate local search algorithm®f@eESIGN and A-DESIGN and their
analysis in Sections 4.6 and 4.7, respectively, proving Theorems 4.1.5 and 4.1.6. Greedy algo-
rithms and their analysis foD-DESIGN and A-DESIGN are presented in Sections 4.8 and 4.9,

respectively, which prove Theorems 4.1.2 and 4.1.4.

4.2 Local Search forD-DESIGN

We first give the local search algorithm fBr-DESIGN with repetitions.
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Algorithm 4.1 Local search algorithm fob-DESIGN

Input: V = {vy,...,v,} Wwherev; € R d < k € N.
Let I be any (multi)-subset dfl, n] of sizek such thatX = >._, v;v; is non-singular matrix.
While 3i € I, j € [1,n] such thatlet (X — viv] + v;0]) > det(X):
X — X — o) —i—vjva
I—T\{i}u{j}
Return(Z, X)

4.2.1 Local Search Algorithm

4.2.2 Relaxations

To prove the performance of local search algorithm, presented earlier as Theorem 4.1.1, we use the
convex programming relaxation for the-DESIGN problem. We first describe these relaxations

in Figure 2.2c in Preliminaries. (see Chapter 7 of [BV04]). Let OPT denote the be the common
optimum value of PD-REL) and its dual D-ReL-DUAL). Let I* denote the indices of the vector

in the optimal solution and let® = det (3", ;. vivf)é be its objective. Recall that? > log ¢P.

Theorem 4.1.1 now follows from the following result.

Theorem 4.2.1.Let X be the solution returned by Algorithm 4.1. Then,

_ 1\ ¢
det(X) > (%) 47

and therefore,

_d+1
det(X) z%-&

=

Before we prove Theorem 4.2.1, we begin with a few definitions. (LeX ) be the returned
solution of the algorithm. Let; be thed x |I| matrix whose columns are for eachi € 1.
Observe thaf¥ = V;V," and X is invertible sincelet(X) > 0 at the beginning of the algorithm
anddet(X) only increases in later iterations. We tet= v]X*lvi foranyl < ¢ < n. Observe

that if i € I, thenr; is the leverage score of row with respect to the matri¥,". We also let
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Tij = U;rXill)j for anyl S 17] S n.

Notations: For convenience, we summarize the notations used in this section.

OPT is the common optimum value aD¢REL) and its dual D-REL-DUAL).

I* C [1,n] is the set of indices of the vectors in the optimal solution.

1 . .
¢P = det (3, viv) )4, the integral optimum value dP-DESIGN

I C1,n],X =3, ;v isthe solution returned by the algorithm.

Forl <i<n,n=v X tu,.

Forl < Z,j < n, Tij = ’U;I—X_IU]‘.

The following lemma states standard properties about leverage scores of vectors with respect
to the PSD matrixX = 3., v;v; (see for example [DMIMW12]). These results hold even when

X is not an output from a local search algorithm and the proof is included in the appendix.
Lemma4.2.2.Letvy,...,v, € R?andI C [n]. For any matrixX = Y el v;v;, we have:

1. For anyi € I, we haver; < 1. Moreover, for anyi € I, ; = 1 if and only if X — v,v;' is

singular.
2. Wehave _,_, 7; = d.

3. For anyl < j <n,we haveziel TijTji = Tj-

4. Foranyl <i,j5 <n,we haver;; = 7;; andr;; < ,/7;7;.

We now prove an upper bound o for the local optimal solution. This lemma utilizes the

local optimality condition crucially.

Lemma4.2.3.Foranyj € [1,n], 7; < ﬁ}lﬂ-
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Before we prove the lemma, we complete the proof of Theorem 4.2.1 using Lemma 4.2.3.
Theorem 4.2.1We construct a feasible solution to thB{REL-DUAL) of the objective value at
most? log det(X) + log ;—~—. This would imply that

1
D < og det(X) + log ————
05 < glogdet(X) +log 7o

which proves the first part of the theorem. The second part follows 31?16_@ log ¢P.
LetY = aX,p = maxi<j<, vaY_lvj = émaxje[lyn] vaX_lvj wherea > 0 will be fixed

later. Then(Y, 1) is a feasible solution of/p-REL-DUAL). Hence,

1 k1
ng? pi log det(aX) + 7 Efélﬁ% UTX v;—1

<loga + 1lo det(X) + k d -1 (Lemma 4.2.3)

=08aT e do k—d+1 -
Settinga = —7—~ d+1’ we get

P <1lo L—i—llo det(X)+1—-1=1lo L—Fllo det(X)
P8 a1 T ad s Tk —d+1 48

asrequired. ]

We now prove Lemma 4.2.3.

Lemma 4.2.3SinceX is a symmetric matrixX ! is also a symmetric matrix and therefare =

7;; for eachi, j. We first show that the local optimality condition implies the following claim:
Claim 6. For any: € Iandl < 7 <n,we haverj — TiTj + TijTji <.

Proof. Leti € 1,5 € [1,n]. By local optimality of!,

det(X — v;v, + vjv; T) < det(X).
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Next we cite the following lemma for a determinant formula.

Lemma 4.2.4. (Matrix Determinant Lemma, [Har97]) For any invertible matrik € R?*? and
a,b e RY,
det(A+ab") = det(A)(1+b" A7 a)

Applying the Lemma twice talet(X — v;v;' + v;v]), the local optimality condition implies
P i iYj

that

det(X) > det(X — vv, + vjva) = det(X + vjva)(l — v (X + vjva)_lvi)

= det(X)(1 + v;X_lvj)(l — v (X + Uj'U]T)_l'UZ'>

Hence,(1 + v; X 'v;)(1 — v/ (X +v;v])"'v;) < 1. Applying Sherman-Morrison formula, we

get
X tyu] X1
Ty —1 T -1 77
1 J1—7m+-2L ) <1
( —|—T])( T+1+7—j)_
(1 — Tz)<1 +Tj) + TijTji S 1
’Q'—'ﬁ73‘+’ﬁjfﬂ SET}

This finishes the proof of Claim.6 H

Now summing the inequality in Claim 6 over alE I, we get

Z (Tj - TZ'T]' +7—ij7_ji) § ZTi.

el i€l
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Applying Lemma 4.2.2, we obtain that; — d7; + 7; < d. Rearranging, we obtain that

T~<—d
T k—d+1

asdesired. O

4.2.3 D-DESIGN without Repetitions

We defer the proof of local search fér-DEsIGN without repetitions to Section 4.4.

4.3 Local Search forA-DESIGN

In this section, we prove the performance of modified local search, presented earlier as Theo-
rem 4.1.3. As remarked earlier, we need to modify the instance to cap the length of the vectors

before applying the local search procedure. This is done in Section 4.3.1. We show that the value
of any feasible solution only increases after capping. Moreover, the value of the natural convex

programming relaxation increases by at most a small factor. We then analyze that the local search
algorithm applied to vectors of short length returns a near optimal solution. Combining these facts

give a complete analysis of modified local searchAeDESIGN in Section 4.3.2 which implies

Theorem 4.1.3.

4.3.1 Capping Vectors

Algorithm 4.2 Capping vectors length fot-DESIGN

Input: V = {vy,...,v,} C RY, parameten\.
While Ji € [1,n], ||vi]|3 > A:
t = argmax;c(, ||vi|a-

. 1 UtU;r
Forj € [1,n],v; = (Id — §m) v;

Forj € [1,n],u; = v,.
ReturnU = {uy,...,u,} C R?
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The algorithm to cap the length of input vectors is given in Algorithm 4.2. In each iteration,
it considers the longest vectoy. If the length of this vector (and thus every vector) is at most
then it returns the current updated vectors. Else, it scales down all the vectors along the direction
of the longest vector. Herd, denotes the-by-d identity matrix.

Before we give the guarantee about the algorithm, we introduce the convex programAer the
DESIGN problem in Figure 2.1c (see Chapter 7 of [BVO04]) in Preliminaries. For any input vectors
V = {vy,...,v,}, the primal program isi-ReL(V') and the dual program id-ReL-DUAL (V).

We index these convex programs by input vectras we will analyze their objectives when
the input vectors change by the capping algorithm. W@bﬁe{ﬂ/) denote the (common) optimal
objective value of both convex programs with input vectdrs

We prove the following guarantee about Algorithm 4.2. The proof along with some intuition

of Algorithm 4.2 appears in the appendix.

Lemma 4.3.1. For any input vectors/ = {v,...,v,} € R*andk > d, if K > 15 then the

capping algorithm returns a set of vectdrs= {uy,...u,} such that
1. |ju]|3 < Aforalli € [n].
2. For any (multi-)setS C [n], tr ((Zies v,»viT)_1> <tr ((Zies uiuj)_l) :
3. AU < (143004 (6A(V) 4 224).

Lemma 4.3.1 states that if an algorithm returns a good solution from capped vectors, then the
objective remains small after we map the solution back to the original (uncapped) input vectors.
Moreover, by choosing a sufficiently large capping leryttwe may bound the increase in optimal
value of the natural convex programming relaxation after capping by a small factor. Optimizing

for A is to be done later.
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4.3.2 Local Search Algorithm

We now consider the local search algorithm with the capped vectors. The performance of the

algorithm is stated as follows.

Algorithm 4.3 Local search algorithm faA-DESIGN with capped vectors

Input: U = {uy,...,u,} CRY d<keN.

Let I be any (multi)-subset dfl, n] of sizek such thatX = >._, w;u; is nonsingular.
While 3i € I, j € [1,n] such thatr (X — wu] +uju))™") < tr(X71):
I=1\{i}u{j}

Return(/, X)

Theorem 4.3.2.Let (I, X) be the solution returned by Algorithm 4.3]|if;||3 < A for all i € [n],

-1

— AP
wx ) <o) | (1- 152 -y 222

The proof of Theorem 4.3.2 is deferred to the appendix. We now analyze the modified local
search algorithm presented as Algorithm 4.4 with input vectors- {vy,...,v,} which may
contain vectors with long length using Theorem 4.3.2. I*die the set of indices of the vectors in
the optimal solution ofA-DESIGN with input vector set/” and let¢” (V) = tr ((Ziep viv;)_1>

be its objective. Observe thef (V) < ¢*(V).

Algorithm 4.4 Modified local search algorithm fof-DESIGN
Input: V= {vy,...,v,},d <k €N,
LetU = {uy,...,u,} be the output of Vector Capping Algorithm 4.2 with ingiit, A).
Let/ C [1,n],X =), ;uu; be the output of Local Search Algorithm 4.3 with ingdt k).
Return/.

Theorem 4.3.3.For input vectorsV = {vy, ..., v,} wherev; € R? and parametek, let I be the

109



solution returned by Algorithm 4.4. i > i—ff ande < 0.001, then

The (1 + €)-approximation of Algorithm 4.4 is achieved by setting an appropriate capping

lengthA and combining the guarantees from Lemma 4.3.1 and Theorem 4.3.2.

Proof. By Theorem 4.3.2,

tr((Zu,uj) )<¢?(U) 1—d—;2_ &ﬁfT(U))

-1
A
g (1244 W)

2 d 20M (V)

The last inequality follows sinck > f—f} andA = . By Lemma 4.3.1,

d
2 V)
PR (U) < (1+1500€*) (¢4(V) + 1356207 (V)) .

Since¢} (V) < ¢*(V), we getdh(U) < (1 + 1500€*)(1 + 135€*)¢” (V). Substituting in the

eguation above, we get

o - . (1+ 1500¢%)(1 + 135¢2)
tr ((Z Uit ) ) =¢ (V)1 — S+ et /d — e/(1 + 1500e") (1 + 135¢2) /2

il

< (14 9*(V)

where the last inequality follows from the fact that. 0.001. By Lemma 4.3.1, we also have that
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tr ((Zie] Ui'UiT)_1> < tr ((Ziel uluj)_1> Hence,
-1
tr (Z ) < (1+ A (V).
el
This finishes the proof of Theorem 4.3.3 ]

Algorithm 4.4 requires the knowledge of the optimum solution valtié/). We can guess this

value efficiently by performing a binary search. The details appear in the appendix.

4.3.3 Instancesvith BadLocal Optima

In this section, we show that preprocessing input vectors toAHmESIGN problem is required

for the local search algorithm to have any approximation guarantee. This is because a locally
optimal solution can give an arbitrarily bad objective value compared to the optimum. Hence, this

requirement applies regardless of implementations of the local search algorithm. We summarize

the result as follows.

Theorem 4.3.4.For anyk > d > 2, there exists an instance of-DESIGN, either with or without

repetitions, such that a locally optimal solution has an arbitrarily bad approximation ratio.

We note that any instance #-DESIGN with repetitions can be used fot-DESIGN without
repetitions by making: copies of each input vector. Therefore, it is enough to show example
of instances only inA-DESIGN with repetitions. For each let e; be the unit vector in the™
dimension. In this sectiony is a real number tending to infinity, and tH¢ N') ~ B(/N') notation
indicates thatimy_. . % = 1. All asymptotic notions such as big-Oh are with respedvte-

oo. We first show the bad instance whien> d = 2. Thoughd = 2 seems a small case to consider,

the calculation presented is central to prove the main theorem later.

Lemma 4.3.5. There exists an instance of-DESIGNfor £ > d = 2, with repetitions, such that a

locally optimal solution has an arbitrarily bad approximation ratio.
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The construction in Lemma 4.3.5 can be generalized to2 dimensions by adding a vector
with an appropriate length to each additional dimension. The proof of Theorem 4.3.4 appears in

the appendix. We now prove the Lemma.

Proof. Let v; = [1;55],v2 = [1;— x|, w1 = [N*%+],w, = [N* —+], and let the input of
A-DESIGN be these four vectors. We first make straightforward calculations, summarized as the

following claim.

Claim 7. Letp, ¢ be positive integers. Then,

tr ((pvlvlT + qvgv;)_1> =——IN*+0(1) (4.1)
4pq
- 1
tr ((pvlvlT + quavg + wywy ) 1) — TN4 + O(N) (4.2)
pTq
- 1
tr ((pvlvlT + q'1121)2T + wgw;) 1) = TN4 + O(N) (4.3)
pPTq
T T\ ! N? -8
tr ((w1w1 + wow, ) > =5 +O(N™°) (4.4)
—1
. a b
Proof. We will repeatedly use the formuta = a‘jij ‘ZC. We have
c d

1
p+q (p—qN?
(p—q)N?* (p+qN*

pra+(@+oON"*t  p+tgq

= = N*+0(1
(p+q?N—*—(p—q)’)N—*  4pq +o)

tr ((pvlvlT + qvgvT)_1> =tr
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N8+ p+q N3+ (p—q)N2
N*+(p—q¢ N> N?+(p+¢gN*

_ N+O@1) 1
~ (p+ g N*+O(N)  p+g

—1
tr ((p'ulvlT + quavy +wiw) ) ) = tr

N*+ O(N)

The calculation fotr ((pvlvlT + quavy + wng)_l) is symmetric. Finally, we have

1
B 2N8 0 N2 1
tr (wiwy + wowy ) Yy =5+ 55
0 2N~ 2 2N

finishing theproof. n

We now continue the proof of Lemma 4.3.5. let= |4],¢ = [£] and consider the solution
S which hasp andq copies ofv; andwv, respectively. By Claim 7, the current objective fis
tr ((pvlvlT + C]UQUT)71> ~ 1..V* and the objective of \ {v;} U {w;} for any pairi, j € {1,2}
is g N' + O(N) ~ 23 N* As - N* > 5 N* > (2 N* for k > 2, S'is locally optimal,
However, consider another solutigft which picksp and ¢ copies ofw; and wy. Since
tr (wiw] + wgw;)_l = O(N?), by monotonicity oftr((-)~*) under Loewner ordering, we must
have that the objective given I is also at mosO(N?), which is a©(N?)-factor smaller than

the objective value of. The result follows becausE tends to infinity ]

4.4 Proofs from Section 4.2

We use the notatiofA, B) for an inner product of two matrices$, B of the same size. We begin
by stating the Sherman-Morrison formula that is important in our calculations. We instantiate it

for symmetric matrices.
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Theorem 4.4.1.Let L be and x d invertible matrix andy € R%. Then

L v L1

™! _ -1
(Ltwt) =1 l+v" L1

Lemma 4.4.2. (Matrix Determinant Lemma, [Har97]) For any invertible matrix € R**“¢ and
v € RY,

det(L +vv') = det(L)(1+v' L™ v)
We now detail the missing proofs.

Lemma4.22letW = X_; = X — v, = D e v;v; . To showr; < 1, we make two cases

depending on whethé# is singular or not.

Case 1: W is non-singular.

7= v (W + v )y
— o] (W—l - —W_IWZ'TW_1> v,
‘ 1+o/ Wy, )
o] W=t Wy,
1+ v, Wy,
o] Wt + (v W2 — (v Wt;)?
1+ v Wy,

T —1

U;Wﬁl’l)i
1+ ’UZ-TW_LUi

< 1.

Last inequality follows from the fact that' W ~'v; > 0 sincel¥ ~! is non-singular.

Case 2: W is singular. We have that is non-singular andl’ = X — v;v, is a singular matrix.
Let YT denote the Moore-Penrose pseudo-inverse fidfr any matrixy. Observe thakf = X1

From Theorem 1 [Mey73], we have that
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X1 — it — Wi (I — WWH)T B

(I —WIW) T Wi

I = WW i3

11 = WIW) T3

(1 + v, Wio) (I — WIW) Two (I — WWTH)T

11 = WIW) T 31 (1 = WW T3

Now we use the fact thdt — W W 1) and( — WTW) are projection matrices. Sinee Pv =

| Pv||3 for any projection matrix” and vectow, we obtain that

(UZ-TWT%) (v?([ — WWT)Tvi)

(v (I = WIW) ;) v W,

17 = WHW) T3

v X o, = o] Wy, — —
(1 = WW |3
(14 v W) (I — WIW) Tw] (I — WIWH T,
(I = WIW) Ty |3]](1 — WW )13
= o] Why — o Wiy, — o Wl + (14 0] W)
=1
as claimed.

We now show thap ., 7, = d. Indeed

iel

ZTi = ZU;Xﬁlvi = Z<Xﬁl,vivi—r> = <XilazviUiT> = <X71’X> =d

el i€l el

Similarly, we have

2: E:T—l Tyv-—1 E/‘—lT—l
TijTji = Ui X Uj'Uj X V; = <X Ujvj X s

iel el iel

= (X_lvjvaX_l,X> = vaX_lvj

i€l

v, ) = (X_lvjvaX_l, Z v, )

el

For the last part, observe th&t ! is symmetric and thus; = 7;;. Moreover,
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= vl Xy = (X720) T(X72y) < X 2uillo| X720 = 7Ty
where the inequality follows from Cauchy-Scaxz. ]

4.4.1 Local Searchor D-DESIGN without Repetitions

In this section, we focus on the variantBf DESIGN where repetitions of vectors are not allowed,
and show the approximation guarantee of the local search in this setting. In compari®en to
DESIGN with repetitions, the relaxation now has an upper boundcpand extra nonnegative
variablesy; on the dual. See the relaxation and its dual in Preliminaries.

The local search algorithm 4.1 is modified by considering a swap where elements to be included
in the set must not be in the current set. We prove a similar approximation ratio of the local search

algorithm for the without repetition setting.

Theorem 4.4.3.Let X be the solution returned by the local search algorithm. Then fok at

d
det(X) > (%) 9%

d+1,

and therefore,

k—d
det(X)d > o °.

We note that in the caske = d, the design problem without repetition is identical to with
repetition since the optimal solution must be linearly independent, and thus the bound from with
repetitions of Theorem 4.2.1 applies to obtatapproximation.

The proof of Theorem 4.4.3 is similar 10 design requires a different bound epfrom the
setting with repetitions to set a feasible dual solution, since the local search condition no longer

applies to all vectorg € [n] but only for those not in output sét We first give a bound of; for
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jél.
Lemma 4.4.4.For anyj ¢ S and anyi € S such thatr; < 1,

Ti

T < .
]_1—7'1‘

Proof. We claim that the local search condition implies that for amyl and;j ¢ I, we have
Tj_TiTj+TijTji STZ'. (45)
The proof of the claim is identical to that of Claim 6. Hence, we have

Ti Z ’Tj — TiTj + Ti2j Z ’Tj - TiTj (46)
which finishes the proof of theemma. ]
We now prove the main Theorem.

Theorem 4.4.3As in the proof of Theorem 4.2.1, we construct a feasible solution ta/hBREL-DUAL)
of the objective value of at mogtlog det(X) + log % which is sufficient as a proof of the theo-

rem. Denoter,;, = minje; v Y 'v;. Let

v ax ok 0 j¢l
Iy S P e
7 min j

e

wherea > 0 will be fixed later. We first check the feasibility of the solution. Itis clear by definition

thats, n; > 0. Forj ¢ I, by Lemma 4.4.4, we have

k
k—d

Tmin

1 1
Ty —1
v, Y tu = s <= < —.
J J ]_Oé ~ o

L Ir

Tmin = U+ 1)
1-— Tmin a T]J
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where the second inequality follows from;, < %Zig = %. Fori € I, we have

1
A0 > = (T + T — Ton) = 0; Y10
a

Therefore, the solution is dual feasible. This solution obtains the objectiy&gflet(aX) — 1+

Ep+15"  mi which is equal to

1 k k 1

=-1 det(aX) —1 = 77 /min - i — Tmin

- log et(aX) +da(k—d)T +O‘di€ZI(T Tinin)
D ogdet(aX) — 14 — 4 (d = )

= —logdet(aX) — 1 + ————Tmin + —(d — kTmin
d® ad(k — d) ad

a\k—d

1 k
< —logdet X +1 -1+ —
_doge + log a +a(k:—d)

1 1 k
= ;llogdetX—i—loga— 14— (—Tmin+1)

where the last inequality is by, < ¢. Finally, we setv = % to obtain the objective value of

dual

1
3 log det(X) + log

k 1
k—d_1+1_Elogdet(X>+10gk—d

asrequired.

45 Proofs from Section 4.3

4.5.1 Proofof Performancef Modified Local SearchAlgorithm for A-DESIGN

Proof of Theorem 4.3.2

We first outline the proof of Theorem 4.3.2. Lek, X)) be the returned solution of the Algo-

rithm 4.3. Observe thak is invertible sinceX is invertible at the beginning and(X ') only
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decreases in the later iterations. ket = u; X 'u;, hij = u) X u;, 7, = 7, hi = hy;, and
B = tr(X~1). Since,X is a symmetric matrix,X ! is also a symmetric matrix and therefore

T,; = 1;; for eachi, j € [n].

Notations For convenience, we restate the notations used in this section.

V' : Input to Modified Local Search Algorithm 4.4.

I*: indices of the vectors in the optimal solution 4fDESIGN with input vector set’.

V) = tr (Sier v0])™)-

U : Output of Vector Capping Algorithm 4.2 and input to Local Search Algorithm with

capped vectors 4.3.

A : Foreveryi € [1,n], ||u]]3 < A.
* (I, X) : Output of Local Search Algorithm with capped vectors 4.3 on ifput).

* ¢#(U), and¢; (V) denote the (common) optimal value of objective values of the convex

program with input vectors frofy andU respectively.
° Fori,j S [1, n], Tij = UZTX_IU]', hi]’ = U,;I—X_Qu]'.
e Fori € [TL],TZ‘ = Tii, hz = h”

Following lemma shows some standard connections betwegemn, 7,; andh;’s. Proof of the

lemma is presented in Section 4.5.1.
Lemma 4.5.1. We have the following.

1. For anyi € I, we haver; < 1. Moreover, for anyi € I, ; = 1 if and only if X — v,v;" is

singular.
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2. Wehave_._, 7, = d.

el
3. Foranyi, j € [n], hi(1 + 7;) — 27;h;; > 0.

4. Foranyj € [n], we have) ., _, 72 = h;.

i€l 'ij

5. We have , , h; = 3.
6. Foranyj < [n], we have)_,_, 7;;h;; = h;.
7. For anyj € [n], we haver; < \/h;[|u;||2.

8. Foranyi € [n], let X ; = X —uu, . If X_; is invertible, then for any € [n], we have

Ti+TE =TT
« u] X“}u; = -7, and

1—7‘1'

27'” ij
1—-7; °

. uTX Juj = h; —|— )2 +
Next lemma shows a lower bound bnin terms of/3 andgzb’} (U) by constructing a dual feasible
solution.

2

Lemma 4.5.2.We havenax e, h; > _k.ﬁ;(U)'

Next lemma shows an upper bound bnin terms of 3 and 7; using the local optimality

condition.

Lemma 4.5.3.For any; < [n], 117 < §+2

Before we prove these lemmas, we complete the proof of Theorem 4.3.2.

Theorem 4.3.2By Lemma 4.5.3, for any € [n], {%- < 2. By Lemma 4.5.17; <
/hj|ujl|2 < /h;A. Hence, for any € [n],

b8
1+ /hA = k—d+2

By Lemma 4.5.2, there exisjsc [n]| such that; > Now we note the following claim.

kfbA( )’
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Claim 8. f(z) = ﬁ Is a monotonically increasing function far> 0 if ¢ > 0.

Proof. f'(z) = ez + 0 qrevap 5 = (12:5%2 which is always positive for > 0 if

c>0. O]

Hence, we have

k-6 (U) 5
57 “k—d+2
1+ k.(b,;(U)A +
k—d+2 p - AR U)

This finishes the proof of Theorem 4.3.2 ]
Next, we prove Lemma 4.5.2 and Lemma 4.5.3.

Lemma 4.5.2 We prove the lemma by constructing a feasible solutioA4BREL-DUAL (U). Let

Y =~X72, A\ =maxu! Yu; = ymaxh;
K jet 9T e

wherevy > 0 will be fixed later. Then(Y, \) is a feasible solution tel-REL-DUAL (U). Hence,

gb?(U) > 2tr <(7X‘2)1/2) — kymaxh; = 2,/78 — kymax h;.

j€(n] j€n]

2
Substitutingy = (ﬁ) , We getg(U) > 12— This gives usnaxjei,) h; > 475
Jjem i

— kmax;c[n hj

which is the desired inequality in Lemma 4.5.2 ]
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Lemma 4.5.3We start the proof by showing an inequality implied by the local optimality of the

solution.

Claim 9. Foranyi € I,j € [n],
hl(l + Tj) — h](l — TZ') — 2Tijhij Z 0 (47)

Proof. Fori € I, let X ; = X — uu, . First consider the case when ; is singular. From

Lemma 4.5.17; = 1 andh,;(1 + 7;) — 27;;h;; > 0. Hence,

hz(]_ + Tj) — h](]_ — Ti) — QTijhij Z 0.

Now, consider the case when_; is non-singular. By local optimality condition, we have that
foranyi € 1,5 € [n],

B<tr ((X,i + ujuj)‘l)
By Sherman-Morrison formula,

Ty-2, .
u; X u,

1+ U;—X_Z'Uj

Tx—2 TxX—2.
T X -1, T iy
1 —w, X7 lu, 1+ u; X_u;

tr ((X_i + ujujT)_l> =tr(X ) = tr(X ) +

Hence, local optimality of implies that for any € I, € [n],

Tyv-—-2 Tvyv—2
<tr(X7') 4+ — L M 48
g X —u] Xy 1+ u] X (4.8)
By L 451, we havel X u; — ZX5TT andyT X 2w = h; + 20 4 2rihy
y Lemma 4.5.1, we have] X~ju; = “—=“—= andu/ Xu; = by + 5224 + T2
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Substituting these and(X ') = 3, ujTX’zu] = h;, anduTX u; = 7; in equation (4.8), we get

2T;
hi h (1 T )2 1”7'”
— 1 5 1 TJ+T TlT]

1-7;
0 < hz B hj(]. — TZ')Q + hiTEj + 2(1 — Ti)Tijhij
—1-7 (1=m)(A =7+ 1+ 75 —7i1y)
o< M hats; ~ hi( = 1)+ 2(1 = ) mighy
- 1—Ti (1—Ti)(1—TZ‘+Tj+Tz~Zj—TiTj) (1_7—1)(1_7-i+7—j+7—i2j_7—i7—j)
o< hi(1 — 7, 4+ 1 + Tizj — TiTj — 7'%) B h;(1 —7;) + 275hij
T (A-n)d-mtTm 4 -nry) 1=+ +Th - Ty
0 < hz(l + Tj) _ h]<1 — 7'2‘) + 2Tijhij
_1—T7;—|-Tj—|—7'i2j—7'i7'j 1—Ti—|-7'j+7'z-2j—7'ﬂ'j

0 S hz(]- + Tj) — h](]_ — Ti) — QTijhij

Last inequality follows from the fact that— 7, + 7; — 7,7, + 7 = (1 —7)(1 4 7;) + 75 > 0 which
follows from the fact that; < 1 (Lemma 4.5.1 and_; is invertible). This concludes the proof of

claim 9 ]

Next, we sum up equation (4.7) from claim 9 forat Z and get

<1+T])Zh1_h3(|l| _ZTZ)_2ZTZ]h” ZO

i€l el el
By Lemma4.5.1) ., h; = 3,> .., 7 = d,and)_,_, 7i;hy; = h;. We also know that/| = k
throughout the algorithm. Substituting these in the equation above we get; )5 — h;(k —d) —

2h; > 0 or equivalently,
hi b .
1 + Tj T ]{ — d + 2

This finishes the proof of Lemma 4.5.3 ]
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The Capping Algorithm and the Proof of Lemma 4.3.1

Some intuition of the capping algorithm. Section 4.3.3 shows an example where local search
outputs a solution with very large cost, thus showing that local search does not provide any ap-
proximation algorithm. The failure of local search algorithm is the presence of extremely long
vectors (|v||2 much larger than A-optimum) which leads to “skewed" eigenvectors and eigenval-
ues. Moreover, we were able to show that this is the only bottleneck. That is, if all vector norms
are small (compared to A-optimum), solution output by the local search algorithm has cost at most
(1 + €) times the fractional optimum.

The capping algorithm should then satisfy the following(s): Given an instance with arbitrary

length vectors, output a new instance such that

1. All vectors in the new instance have small length

2. Fractional optimum of the new instance does not increase by mord tharfactor of the

old fractional optimum

3. Any integral solution in the new instance can be translated into an integral solution in the old

instance with the same or lower cost.

If we can get such a procedure, we run the local search on the new instance and get an integral
solution with cost at mostl + ¢) times the fractional optimum of the new solution. Combining
with the properties above, we can then get an integral solution in the old instance with cost at most
(1 + ¢)? of the old fractional optimum.

We note that a more natural capping algorithm where we pick the longest vector, scale this
vector down, and project all other vectors into the space orthogonal to the large vector satisfies
properties (1) and (2) but not (3). That is, given an integral solution in the new instance, we can

not always find an integral solution in the old instance with roughly the same cost.
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We now proof of Lemma 4.3.1, which says that our capping algorithm satisfies three properties

we want.

Lemma 4.3.1For ease of notation, we consider the equivalent algorithm of Algorithm 4.2,

Algorithm 4.5 Capping vectors length fo#-DESIGN

Input: V = {vy,...,v,} C RY, parameten\.
Fori € [1,n],w! :=v;, £ = 0.
While3i € [1,n], ||[v!]|3 > A:
ty = argmaxey ) || w2
% For all vectors, scale the component along wittdirection.

. /+1 1 wfz (wa)T Vi
Forj e [L,n],w;" = | Is— 3 A
=10+ 1.

14
Forj € [1,n],u; = w’.
ReturnU = {uy,...,u,} C R?

First observe that the length of the largest vector reduces by a constant factor and length of any
vector does not increase. Thus the algorithm ends in a finite number of iterations. Observe that the
first property is trivially true when the algorithm returns a solution. For the second property, we
show that the objective value of any sebnly increases over the iterations. In particular, we show

the following claim.

Claim 10. For any setS C [n| and any/ > 0,

tr (wa(wf)T> < tr <wa+l(Wf+l)T>

€S S
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’LUZ ’LUZ T
Proof. Let Z = (]dxd_ 1 Wi, (W) )

2 |, |13

tr <wa+l(wf“)T>_ =tr (Zwa(wf)TZT>_

€S €S

=tr | Z7* (wa(wf)T)_ z !

1€S

)

Observe thatZ has all eigenvalues except for one which i%. ThusZ~! and Z~? have all

eigenvalues at least one and in particfa® = I. Hence,

tr <wa+1(wf+1)T> > tr (wa(wf)T>

€S €S
asrequired. O

To prove the last property, we aim to obtain a recursion on the objective value of the convex
program over the iterations. LBt* = {w?, ..., w’} be the set of vectors at the endfiteration
and letaj = gﬁ]’?(Wg) denote the objective value of the convex program with the vectors obtained
at the end of™" iteration. We divide the iterations in to epochs where in each epoch the length
of the maximum vector drops by a factor f For ease of notation, we gt = 0 be the last
epoch and = 1 to be the second last epoch and so on. For any integer0, we letr, :=
argmin max;ep, [|Jw!||3 < 27 - A be the last iteration gf" epoch. Thus in the™ epoch the length
of the largest vector is in the intervial - A, 2°1- A). LetT denote the first epoch and thus = 0.
Next lemma bounds the increase in the relaxation value in each iteration. The bound depends on

which epoch does the iteration lies in.
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Lemma 4.5.4.For every( € [r,,7,_1), we have

. 2-30/4 8

Next lemma bounds the number of iterations in pfeepoch.

Lemma 4.5.5.For everyp > 1, we haver,_; —r, + 1 < 2d.

We first see the proof of last claim of Lemma 4.3.1 using Lemma 4.5.4 and Lemma 4.5.5 and
then prove these lemmas.

Using Lemmas 4.5.4 and 4.5.5, we bound the increase in relaxation value in each epoch.

Claim 11. For everyp > 1, we have

. o-w/ANE /g
o, 1—(” P ) (a+?)2—/A)

Proof. From Lemma 4.5.4, we have

) 2_3p/4 rp—1—Tp+1 X 8 rp—1—Tp+1 2—3])/4 i
Od’"’”‘(” k) o, T a2 (H k:)

i=1

rp—1—Tp+1 8
(a —|—2p/4A(rp 11— rp—l—l))

(7w
<1+ 3p/4)p1 : (a +2piA(rp 1 — rp+1))
(1 5)

8
23/ 3" 64d
< 2P/4A) (Lemma 4.5.5)

3p/4

IN

IN

IN

1+

asrequired. n

Solving the recurrence in Claim 11, we get a bound on the total increase in the relaxation cost

throughout the algorithm.
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8
2-/4 5 L. 64d
* T *
oy, < (Hpo (1+ ? ) ) (%+Zm
p=0
8
2—3p/4 3d 21/4 64d
T *
8

2P2\\*? /  135d
< <HpT:0 (1 + 2 )> (OéTT + T) (4.9)

Claim 12. For anyk > 15,

. 2%/t 3

Proof.

273p/4 5
o0 /4 3p1/40—3pa/4
e (1) = g g Y Y

p1=0p2=0

+ ﬁ Z Z Z 9—3p1/4=3p2/4=3ps/4

p1=0p2=0p3=0

> 9dn/4 > 2w/ ? >~ 9w/’
=1 + L + <ZPO— + L + ...

k k k

< 1_|_ 2_47 + ﬁ i + ﬁ ’
- k k k
B 1
1-247/k

3
<1+ -
<1+ 2

Last inequality follows sincé > 15. n

Substituting bound from claim 12 in Equation (4.9), we get

. 3\5%/ _ 135d G\ [ . 135d
o= \Itg) ot ) s U rep ) (on t 7
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Last inequality follows from the fact that + a/x)" <1+ e*7 if 2 >y > 0anda > 1.

By definition,r; = 0. Hencenj = o}, = ¢% (V). Also, by definitiona;, = ¢%(U). Hence,

¢ (U) < (1+e8g> (¢§>(V) + %) < <1+3000%) (qu}(V) +135%>.

This finishes the proof of Lemma 4.3.1 n

To complete the missing details in the proof of Lemma 4.3.1, we now prove Lemmas 4.5.4

and 4.5.5.

Lemma 4.5.4 For simplicity of exposition, we make some simplifying assumptions. Without loss
of generality, we assume that = 1, i.e., the longest vector is the first vector in this iteration.
Also, since trace is invariant under rotation of basis, we may assumesthat ,/7e; for some

-
non-negative numbey wheree; = (1 0 ... 0) is the first standard vector. Hence,

1
wfﬂ - ([dxd - §€1€1T> wf.
Since,w! is the largest vector in this iteration add [r,,r,_1), we have
A >y > 2T IA (4.10)

Let x be the optimal solution forl-REL(w, ..., w’). We construct a feasible solutignfor
A-REL(wt™, ... w’*) with objective at most as required in the lemma. &Let 0 be a constant
that will be fixed later. Let

(0 +x) i=1

Yi =

kiﬂ;:rji i €[2,n]

Claim 13. yis a feasible solution tol-ReL(w{™, ... w’).

n
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Proof. Since x is a feasible solution afi-REL (wf, ..., w%), we know thay """ | ; < k. Thus

— k k
_ < 5 <k
Zy’ k+5 k‘+5;xl—kz+5 Ty s

Clearlyy > 0 and thus it ideasible. ]

Now we bound the objective value of the solutipn_et

X — wa Ty = Zyl 1z+1 €+1

Claim 14. For any§ > 0, tr(Y 1) < &£ (tr(X—l) + i) _

&y
Before we prove Claim 14, we complete the proof of Lemma 11.

From Equation (4.10), we have> 27~'A and substituting = 277/2 in Claim 14 we get,

tr(Y 1) < (1 + 2:2) (tr(X_l) + %) :

Since, x is an optimal solution tod-REL(wf,...,w)), we havea; = ¢} (wf,... w)) =

n

tr(X~"). Moreover, sincey is a feasible solution tal-ReL(w! ", ..., w’), we have

At 041 -1 272 PR
Oée+1—¢( e w, ) <tr(Y ) < (14 L O‘4+2p/2A '

Hence, it only remains to show the proof of Claim 14.
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=T

: pq
Claim 14. Let X = Y7 zywi(w)" = wherep € R, g € RY, R € R¥"1*4=1 Then
q R
k+0 -
TY — 511)f+1 (w{Jrl)T + inwarl(warl)T

i=1

1 a 1 !
- (]dxd — §€1€1T) <5wf(wf)T + ;wf(wf)T> (Idxd — 561€I)

1 n — 1 n
|3 0' p+oy q' 3 0"
0 Ig—1yx(a-1) q R 0 I(g—1yx(d—1)
| alp+dy) 3d”
| a0

Since X is positive definite, we must haye > 0, R is also positive definite and more over
p—q' R™'q > 0 (see Proposition 2.8.4 [Ber05]).

Fact 4.5.6. (Block Inversion formula) Ford € R**?, D € R¥™4¢ B € R4 (' € R%* such that

A B | .
is invertible, we have

C D

-1

A B (A— BDC) —(A— BD™'C)"'BD!
—(D—CA™'B)"'CA™! (D — CA-'B)~!

Applying block inversion formula otX, we get

Xl | pra' B
(= a7)

Since, X is a positive semi-definite matrixy —! is also a positive semi-definite matrix. Hence,
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principle submatrices are positive semidefinite. In particular,
p—q R'g>0. (4.11)

and,

1
R— ];CY@T = 0(d—1)x(d—1) (4.12)

Next, let us computer(X ).

Applying block-inversion formula té?Y, we get

(k:+5 )‘1 (tp+67) -2 R'q)

TY — .
1 1-=T
(R~ Geata”)
Hence,
4 1 -
-1 —_T
e RS A iy (T R (( p+oy ) )
Claim 15.
4 4
< —
oy +p—q'R1'q ™ oy
Proof. By Equation (4.11)p — ¢' R~'¢ > 0. Hence, the inequality trivially follas. ]
Claim 16.
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Proof. Since,s,a > 0, —— < 1. Hence,
p+6y P

Applying the above two claims, we get

k 104 1__+ !
vy <« 2 -
2 5’51‘( ) 57+tr<(R qq ) >

L (Y < 10" +tr(X 7 (eq (4.13))
R T < 57 T eq (4.
k+4 10*
-1y « -1
tr(Y ) < 5 <tr(X ) + oy )

This finishes the proof of Claim 14

Proof of Claim 14 also finishes the proof of Lemma 4.5.4

Proof. (Lemma 4.5.5) By definition of, andr,_,, we know that for any € [r,,r,_1),

27 A < max ] < 2°A
i€n
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Let M, = lixa, Ry, = laxq @andforl € [r,,r,_1), let

1wy, (wi,) "

2 w13

My = <]d><d — ) My, Repr = MJ M.

For/ € [r,,m,-1), consider the potential functiam(R,). We show the following properties about

this potential function:
Claim 17. Let M, R, be as defined above fdrc [r,,7,_1). Then,tr(R, ) = d and for{ ¢

[Tpvrp—1)7

* tr(Ry) > 0,and

. tr(Rg.H) < tr(Ré) -

colw

Using Claim 17, itis easy to see that; —r, + 1 < %d. Hence, to prove Lemma 4.5.5, it is

enough to prove Claim 17.

Proof. (Claim 17) Since R, = I, tr(R,,) = dis trivially true. Also, for any? € [r,,7,-1),

R, = M, M, which is positive semidefinite. Hence;(R,) > 0 for any( € [r,,r,_1). For

e lry,rp_1),
Rysy = M M ;WT(I 1“é@¢)T)T([ 1“ﬁ@4JT>A4
(+1 — (11 = Y dxd — 5711 71192 dxd — 571171192 4
i 2 [, |13 2 w13
. wl (wf)T\ . .
Matrix (Idxd — %W) IS symmetric. Hence,
tyll2

l N\T 14 LNT 0 N\T
Ré_l’_l — MET (Idxd _ wtz (wte) lwt[ (wtg) wtz (wtg) ) Me

lwill3 4 [lwill3 (w3
7 (1 BT LT
- X
‘ lwi I3 4 [lw, I3
_ T 3 (Mf—rwfe)(wf[)TMe o 3 (Mg—rwfg)<M€wag>T
=M, M~ 7112 ] 7112
4 ||wtz||2 4 ||wtg‘|2
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By definitionw;, = M,w;”. Hence,

3 (M, Myw,))(M] Mgw;;)" 3 (Rewy,) ) (Rewy)) "
Ry = Ry — — =Ry — -

4 w13 L | (A

And the trace is

R Row?)T Row'™
tr(Rz.g_l) (Rg 4( Ewt2)< Zwt@) >=tr(Rg) 3” fwt ||2

1Al 4w, |13

By Cauchy-Shwarz inequalityju||3 > (v"'w)?/|[v]|3. Substitutingu = R,w;” andv = w,”, we

get
rp rp\ 2
3 ((wt )TR wtp) 3 ((wt )TMe Méwt )
tr(R < tr(R £ ¢ R - ¢ £
(Be) < 0Be) = mr Tt B~ ")~ 1 (w2 Tt I
— tl"(Rg) 3 ||M€wtp’|4 (Rg) § ||wtg‘|4
AL AL
3 [l |
:tl"(Rg) [
AT

Since,l € [ry, 7p-1), |[wf,||3 = max;ep, |[w!]3 > 2P A. Also, by definition ofr,, ||w;”|[3 <

max;epy ||w;?]3 < 2PA. Hence,

320 IA 3

tr(Rey1) < tr(Ry) — TN = tr(Ry) — 3
asdesired. n
Hence, the proof of Lemma 4.5.5¢smpleted. n

Proof of Lemma 4.5.1

Lemma 4.5.1 Proof of first and second statement is same as that in Lemma 4.2.2. So, we start by

proving thath; (1 + 7;) — 27;;h;; > 0.
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Claim 18. For any;j € [n], X "2uu X~1/* < 7;1,.
Proof. Since, X is a symmetric matrix,X ' and X ~'/? are also symmetric matrices. Hence, if

q = X%y, thenX —1/2yu] X ~1/2 = ¢q7. Such a matrix has one non-zero eigenvalue equal to

lql13 = u] X~ u; = 7;. Hence X~ 2u;u] X—1/2 < 151, O

Next, we use this to derive further inequalities.

X_l/zujujTX_l/2 < 7il4
2X_1/2ujujTX_1/2 =271y
2X71/2ujujTX*1/2 = (1+7)l (1, < 1,7 € [n])
XWX WPy ] XX T2 L XTV2(1 4 ) X320 (X2, X% are PSD

2X uju] X2 =2 (14 75)X 2

If A< B, thenv" Av < v'Bwforall v. Henceu, (2X 'uju] X2 < (14 7;) X ?)u; < 0. Orin
other WordShi(l + Ti) — 27—ijh7jj > 0.

Next, we show thap ., 77 = h;.

2 _ Ty-1, . Tyv-1, _ Ty-1, , Ty-1, .
ETU_E u; X uju; X uj—g u; X ujuy X ouy

iel icl iel

= Z(X_lujujTX_l, ugu, )

€U

= (X_lujujTX_l, Z ugu, )

€7
= (X luju, X7 X)
= (u] X XX 1))

Tyl T o Ty=1, 1.
= (u; X uy ) =u; X “uj = hy
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Next, we show tha} ., h; = .

hi: UTX_QU,Z‘
D =D u

el €2

- Z(X_27 u%u;r>

el

= (X)) uul) = (X2 X)

el
= (X1 X'X)

= (XL I) =tr(X)

Next, we show tha} . _, 7;;hi; = h;.

ZTijhij = ZuiTX_lujuiTX_%j = Zqu_lujujTX_%i

el el iel

= Z(X’lujujTX’Q, ugu, )

el

= (X luju X2 Zum?) = (X luju X7, X)

€2
= (u] X%, u/ X' X)

= <U;~|—X_2,Uj> = hj
Next, we show that; < \/h;||u;]|2-

Vhlluille = Ju] X2 |ug]]2

= X B g2 = [1X a2 |2

> ujTX’luj =T;.
Here, the last inequality follows from Cauchy-Schwarz inequality: for any € R¢, u'v <
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[lull2[v]]2-

Next, we show the last two equalities. Forc [n], X ; = X —uu. Letj € [n]. By

Sherman-Morrison formula,

X x4 X luuf X700 Xty X!

s = 414
! 1—u] Xy, 1—7 (4.19)

Hence,

Ty -1, .7 y-1
uj Xy X huyg

Ty-1, — . Ty-1,
u; Xjuy =u; X uy+

1 — T;
ujTX_luiuiTX_luj
1 — T
2
_ o Tu Ty T + T T
J 1 — T; 1—7}

Squaring the terms in equation (4.14), we get

X2 = X2 n X*luiqu*ZUiu;Xﬂ N XfluiuZTX*Z N szuiuiTXfl
- (1 —7'2‘)2 ]-_Ti 1—7'1‘
X luu X0 Xl X720 X 2uu] X1

=X +h + +
(1—m7)? L= 1=
Hence,

Ty —1, .7 y-1 Ty =1, .7 -2 Ty 20,7 Y—1
oy T oo w; X wguy Xy ug X uuy X 7wy uy X uuy, X iuyg
X" u; =u; X u + hy
u; X uj = u; u; + h; e + - + 1

_ Tij Ty, Tghy | hiTy

_hj—i—hz(l—ﬂ)z 1_7—1' 1—7'1‘
2

=y

(]_ — TZ‘)Q 1-— T
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4.5.2 GuessingA-Optimum Valueg” (V)

We remarked earlier that Algorithm 4.4 requires the knowledge of the optimum solution value
#*(V). We can guess this value efficiently by performing a binary search. We explain the details
and the proof of the polynomial runtime of the search in this section.

Leta = tr <(Z;’:1 vl _1>. Since we may pick at mostcopies of each vector, we have that
AV > tr ((k S vivz.T)A) = +a. The fractional solution:; = £ is feasible forA-ReL(V).
Hence,¢? (V) < tr ((% S viv;—”)_1> = Za. Using the result in [ALSW17b], we get that

A (V) < (1 + €)¢h(V). Hence (V) € [%a,@a)] Hence, given an instance, we first

n(1+e)
k

computex and then perform a binary search fgt(V/) in the interval[; o, al.

Suppose the current range of the optimuni¥is]. We guess OPT to bég—“ (use this as A-
optimumg?® (1)) and run the modified local search algorithm. We claim that if it outputs a solution
with cost at most1+¢) 4 theng? (V) lies in the rangé?, (1+¢)“£%]. If it outputs a solution with
cost more thaiil +¢) <5, theng? (V') lies in the rangé®, u]. The first statement is trivially true.
The second statement is equivalent to the followingsifV) is less tharf£%, then the algorithm
outputs a solution of cost at mgdt+ e)“T“. Proof of this fact follows exactly the same way as the
proof of Theorem 13 by substituting* (V) with £* everywhere. The proof still follows, since
the only place we use the meaning of tfg V') value is in claiming that there exists a fractional
solution with valueg” (V). Becausep® (V) is less thant%, this statement is true with* (V')
replaced by,

We can guess the value of*(V') upto a factor ofl + € in log,, . (n(1 + ¢€)) < w
iterations. This introduces an additional multiplicative factot af ¢ in the approximation factor
in Theorem 4.3.3. Hence, we get an approximation factoflof ¢)(1 + ¢) < (1 + 3¢) and

polynomial number of iterations.
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4.5.3 Exampleof Instance$o A-DESIGN

In this section, we give more details deferred from Section 4.3.3, starting with the proof of Theorem

4.3.4.

Theorem 4.3.4The casel = 2 is proven in Lemma 4.3.5, so lét> 3. Let

1 1
v1=[1;m;0;-..;0},v2=[1;—m;0;..-;0],w1=[N4;N;0;..-;0]7
4, . N- . . 1 .
UJQ:[N,—N,O,...,O],U: uzzmez@:i’),d 5

and let{vy,vs, w1, wo} U U be the input vectors tel-DESIGN. Letp = [2=H2| g = [E=di2],
Consider a solutiort’ which picksp and ¢ copies ofv; andv,, and one copy of:; for each
i=3,...,d. We claim thatS is locally optimal.

Consider a swap of elements= S\ {s} U{s'} wheres’ # s. If s € U, thenS’ does not span
full dimension. Hences € {vy,v2}. If s = ¢; € U for somei, then the increase of eigenvalue
of S” in theith axis reduces the objective ) N?). However, by Claim 7, removing a vecter
will increase the objective b2(N*) . Finally, if s’ ¢ U, then the swap appears within the first
two dimension, so the calculation that a swap increases the objective is identical to tHe-case
proven in Lemma 4.3.5. Therefor§,is locally optimal.

We now observe that the objective given Bys ©(N*), dominated by eigenvalues of eigen-
vectors spanning the first two dimension. However, consider a sol§tiomhich picksp andg
copies ofw; andw,, and one copy ofi; for eachi = 3,...,d. The objective ofS* contributed
by eigenvalues of eigenvectors lying in the first two dimensio@({8/?) (Claim 7), so the total

objective ofS* is ©(N?), which is arbitrarily smaller tha®(N*), the objective ofS. O

We also remark that the exmple of input vectorsit@ESIGN given in this section also shows
that A-DESIGN objective S — tr ((Zies vivz.T)A) is not supermodular, making the analysis

of algorithms in submodular optimization unapplicable. A set funcon2V — R is called
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submodular ifg(S U {u}) — g(S) > g(S" U {u}) — g(S") forall S € S’ C U andu € U, andg

is supermodular if-g is submodular. In other words,is supermodular if the marginal loss @f

by addingu is decreasing as the sgtis increasing by a partial ordering—". As a set increases,
the marginal loss of thel-DESIGN objective not only potentially increase, but also has no upper

bound.

Remark 4.5.7.For anyd > 2,T > 0, there exist sets of vectofsC S’ in R? and a vector € R?

such that

tr ((ZiES’ U“Tyl) i <(Zz’eSf ol + wa)A)
tr ((ZZES UUT)_1> - <<Zz‘es vl + wa)_l)

Proof. We first assumel = 2. Use the same definitions of vectors from Lemma 4.3.5 and set

>T

S =A{vy,v}, 8 = {v1, v, w1 } andw = w,. By Claim 7,
—1 -1
tr (Z UUT> —tr (Z v+ wa> = O(N)
€S
and

tr (Z m)T> ) —tr (Z vl + wa) : > tr (Z mﬁ) -

€S’ i€s’ i€s’
T T\~ !
— tr (wlw1 + waty )

= ®(N4)7

so the proof is done becausé tends to infinity. For the casé > 3, we may pad zeroes to all

vectors in the above example and add a unit vectdf, 1§ to each of othed — 2 dimensions. [
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4.6 Approximate Local Search for D-DESIGN

While Theorem 4.2.1 proves a guarantee for every local optimum, it is not clear at all whether
the local optimum solution can be obtained efficiently. Here we give a approximate local search
algorithm that only makes improvements when they result in substantial reduction in the objective.
We show that this algorithm is polynomial time as well results in essentially the same guarantee as

Theorem 4.2.1.

Algorithm 4.6 Approximate Local search algorithm fér-DesIGN

Input: V =wvy,...,v, € R d <k € n, parameted > 0.
Let I be any (multi)-subset dfi, n] of sizek such thatX = >~._, v;v; is non-singular matrix.
WhileJi € I, € [1,n] such thatlet (X — v;v] +v;v]) > (14 0) - det(X):
X =X —ovw, —i—vjva
I'=T\{i}u{j}
Return(7, X)

Recall thatqﬁj? denote the be the common optimum value bFREL) and its dual O-REL-

-

DuAL). I* denote the indices of the vector in the optimal solution ald= det (Ziep Uiv;)

be its objective. We hav@]‘? > log ¢P. We have the following result about Algorithm 4.6.

Theorem 4.6.1.Let X be the solution returned by Algorithm 4.6. Then,

d

det(X) > e *0 ( ?

and therefore,

k—d+1
det(X)a > e—’“fTJ“-ng.

Moreover, the running time of the algorithm is polynomiahini, k, % and the size of the input.

Proof of the theorem is analogous to the proof of Theorem 4.2.1(1Léf) be the returned
solution of the algorithm. We also lét; denote thel x |/| matrix whose columns are; for

eachi € I. Observe thaf\ = V;V," and X is invertible sincedet(X) > 0 at the beginning of
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the iteration and it only increases in later iterations. Werjet v, X ~1v; for any1 < i < n.
Observe that if € I, thenr; is the leverage score of row with respect to the matrik,". We also
7; = v] X tv; foranyl < i,j < n. As in Theorem 4.2.1, we have some properties regarging

andh;.
Lemma 4.6.2. We have the following.

1. For anyi € I, we haver; < 1. Moreover, for anyi € I, 7; = 1 if and only if X — v;v; is

(2

singular.

2. We have>

iGITi = d

3. Foranyl < j <n,wehave) ., 7,7 = 7;.

4. Foranyl <i,j5 <n,we haver;; = 7;; andr;; < ,/7;7;.

Proof of the lemma is identical to that of Lemma 4.2.2. Next, we show an upper bourd on

for the approximate local optimal solution.

Lemma 4.6.3.For anyj € [1,n],
4 d+ ok
U= dr1

Before we prove the lemma, we complete the proof of Theorem 4.6.1.

Proof. [Theorem 4.6.1] We construct a feasible solution to theReL-DUAL) of the objective

value of at mos# log det(X) + log —— + . This would imply that

k ko

1
T < =logdet(X) + log ———
O} < < log e<)+0gk:—d+1+d

d

which proves the first part of the theorem. The second part follows si?lc_elog @P.
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Let

1
Y =alX, [0 = max vaY lvj = — max vaX lvj
1<j<n v je[l,n]

wherea > 0 will be fixed later. Then(Y, 1) is a feasible solution of/Q-REL-DUAL). Hence,

1 k1
D Tyv-1
¢fSalogdet(aXH—E-a]glﬁ};}va v; — 1
1 k d+ ko
<1 —logdet(X)4+ — - —-+———1 Lemma 4.6.3
< logat glogdet(X) + 50 =00 ( )
Settinga = ——, we get
k 1 ko k 1 ko
D <log——— + Zlogdet(X 1+ ——1=log——— + —logdet(X —
O Slogp— o + glosdet(X) + 1+ 8T g1 g0t X)+
asrequired. n

Lemma 4.6.3SinceX is a symmetric matrixX ' is also a symmetric matrix and therefare =
7;; for eachi, j. We first show that the approximate local optimality condition implies the following

claim:

Claim 19. For anyi € I andj € [n], we have

Tj_TiTj+TijTji S(g—f-ﬂ (415)

Proof. Leti € I, j € [n]and X _; = X — v;v,. First, consider the case whéeh ; is singular.

From Lemma 4.2.2, we have that= 1, 7,; = 7;; < ,/7;7; < 1. Hence,

Tj—TiTj—i‘TZ‘jTjiSTj—Tj—i‘l:TiS(s—i‘Ti
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Now consider the case whex_; is non-singular. By local optimality of, we get that
det (X_; +vv) ) < (1+0)det (X_; + viv;) (4.16)
Claim 20. For any invertible matrixA € R%¢ andv € R?,
det(A+vv") = det(A)(1 +v"A )
Hence, local optimality of implies that for any € 7,5 € [n],
det(X_;)(1+v] XZlvj) < (1+6)det(X_;)(1 + v X }vy)

Dividing both sides bylet (X_;) , we get for eachi € I and; € [n], we havel + v/ X~v; <

(1+6)(1+ v X~!v;) or equivalently,
UJ-TX:Z-lvj <5+ (1+ 8y Xt

From the Sherman-Morrison Formula we obtain that foraay/ and; € [n], we have

X_IUZ'UZTX_I

T( yv-1
T x 4 V%A
Vi < * 1— v X1y,

X—l ; TX—I
)vj§5+(1+5)vj (X‘H—L)w

1— v X1y,

Now using the definition of;, 7; andr;;, we obtain that for any € I and1 < j < n, we have

TiiTiqi T-2
T <0+ (1+9) <Ti+1_17').

Multiplying by 1 — 7;, which is positive from Lemma 4.2.2, on both sides we obtain that for any
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1€ lTandl <j <n,
Tj_TiTj—"TijTji S(S(l—ﬂ)—f-(l—f—é)ﬂ:é—f—ﬂ

thus finishing the proof of thelaim. ]

Now summing over the inequality in Claim 19 for alE I, we get

Z (Tj — TiTj +7—ij7-ji) S Z(S—{— ZTi.

el el el

Applying Lemma 4.2.2, we obtain that
k’Tj —de+Tj S (5k+d

Rearranging, we obtain that

' d+ ok
T Cd+1

Runtime Analysis. One may obtain the worst-case runtime for local search for D-design as fol-
lows. LetL be the maximum number of the length of binary string that encodes the number in
each component across all input vectors Suppose we start with any solutichwith nonzero
determinantlet(VsVY) = > RCS.|R|=d det(VgVZ) (Cauchy-Binet), which can be done in poly-
nomial time by finding a set of linearly independent vectors. Sivigg/ is PSD,det(VsVY)

is nonnegative and hence must be strictly positive, and therefore at least onéetéviml/!) is
strictly positive. We now use the fact that for a square matrjthe binary encoding length of

det(A) is at most twice of the encoding length of matrixthe exact definition of encoding length
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and the proof are in Theorem 3.2 of [Sch98]). Since the length>ofd matrix VzV} is at most
2Ld*log d (by bounds of values from direct matrix multiplication), the lengthlef(VzV}7) is at
most4 Ld? log d. Hence, the value of the determinant is at l€agf?* losd,

The optimum solutiorS* of D-DESIGN attains the objective valug_ .. g, det(VaVy)
(Cauchy-Binet). Each termiet(VzV;)) again has length at modt.d? log d, and so is at most
214 losd Therefore, the optimum is at mogj) - 2154 led < fdotbd*loed Hence, any solutios
with nonzero determinant is/28-%* losd_gpproximation. Each swap increases the objective by a

multiplicative factorl + 9, so the algorithm takes at most

10g1+5 (kdszdQ log d) <

Ld?logd + dlog k
(dlogk+8Ld210gd):O( st Og)

o

SN )

swapping steps, where we % < 2 for § < 2. We can use matrix determinant lemma (for
rank-one update) to compute the new determinant objective rather than recomputing it in the next
iteration. The matrix determinant lemma computation také¢*) times, so one swapping steps

takesO(knd?) time by computing alkn potential pairs of swaps. Therefore, the local search in

total takesD (L’Wp log d+knd” log ’“) arithmetic operations.

4.7 Approximate Local Search for A-DESIGN

Algorithm 4.7 Approximate Local search algorithm f@r-DESIGN
Input: U = {uy,...,u,} CR% d<keN.
Let I be any (multi)-subset dt, n] of sizek such thatX = },_; v;v; is non-singular.
WhileJi € I, € [1,n] such thatr (X — wu, +uju))™') < (1—6)tr(X1):
X =X —uu + uju;r

I'=1T\{i}U{j}
Return(7, X)

Recall that for any input vectois = {vy,...,v,}, the primal program isi\-ReL(V') and the

dual program isA-REL-DUAL (V). We index these convex program by input vectors as we aim
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to analyze their objectives when the input changes by the capping algorﬁ;\hh{) denote the
(common) optimal value of objective values of the convex program with input vectorsifrom
denote the indices of the vectors in the optimal solutiod @ESIGN with input vector set” and
let A (V) = tr ((Ziep vivf)_1> be its objective. Recall that (V) < ¢*(V).

Similar to the local search result fef-DESIGN of Theorem 4.3.2, we can prove the following

theorem:

Theorem 4.7.1.Let X be the matrix returned by Algorithm 4.7.|1f,;||2 < A for all i € [n],

-1

d—2) 1 A¢R(U)
1+ (

tr(X 1) < ¢} (U) (1 T k—d)o k

To prove Theorem 4.7.1, we can prove the following lemma instead of Lemma 4.5.3.

Lemma 4.7.2.For anyj € [n],

hy ALt (k= )
1—|—Tj_ k—d+2

Instead of Theorem 4.3.3, Theorem 4.7.1 now leads to the following theorem:

Theorem 4.7.3.For input vectorsV = {vy,...,v,} and parametet, letU = {uy,...,u,} be

the set of vectors returned by the Capping Algorithm 4.2 with vector setd A = . Let

_d
e2p” (V)
(I, X) be the solution returned by Algorithm 4.3 with vector Beand parametet. If k& > i—ff

f<d

5 ande < 0.001 then,

tr (Z vw?) < (14 2€)0"(V).

el

Proof of the theorems and lemmas are identical to the corresponding theorems and lemmas

proved in Section 4.3. Hence, we avoid the tedious calculations in reproving these theorems.
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Runtime Analysis We claim that the running times of both capping and approximate local search
for A-DESIGN are polynomial inn, d, k, % and the size of the input. We first analyze approximate
local search algorithm foA-DESIGN. Denotel the biggest bit complexity across any entries of
any input vectow,. We claim that the runtime complexity is identical to that/dfDESIGN. The
analysis follows similarly to the runtime analysis DfDESIGN, and we analyze here in detail for
completeness.

We first want to bound the original objective and the optimurh,id, L. By Cauchy-Binet,

Eya(VsVg )= Y det(ViVgp)anddet(VsVy) = Y det(Vy Vi)
RCS:|R|=d—1 RCS:|R|=d
Since the length oIV for |R| = d — 1 is at most2Ld? log d, we have that iff;_(VsVy ) is
strictly positive, thenE,_, (VsVy ) > 2-4Ld*loed (Sch9g)), for at least one teraet(VVz) is
strictly positive. We also hav&,_,(VsVy) < (f,) - 244" ¢4 for any S of sizek. The same is
true fordet and R of sizek in place of £;,_; and R of sized — 1. Therefore, an optimal s&t*

satisfies
T —4Ld?logd
Ey1(Vs-Vg.) 2 8 ~dg-8Ld*logd

det(Ve: V) — (Z) . 94Ld?logd —

and any initial set5 with finite optimum satisfies

k 4Ld?logd
(4=1) -2
9—4Ld?logd

Ed_l (VSVST)

< k:a’28Ld2 logd
det(VsVy) =

IN

Therefore, any initial solution to the local search algorithm with finite optimunmisal6Ld* logd_

approximation. Hence, the local search algorithm takes at most

10g1+6(k2d216Ld210gd) <

SN

Ld?logd + dlogk
(2dlog k + 16Ld* log d) = O ( = 5+ = )
swapping steps. Similar tB-DESIGN, each swapping step takégknd?) time by matrix deter-

149



Lknd? log d+knd? log k
1)

minant lemma, so the total runtime@s( ) number of arithmetic operations.

We now show that capping algorithm terminates in polynomial time. Again/lee the
maximum number of the length of binary string that encodes the number in each component across
all input vectorsy;. Then||v;||? < V/d - 2F for all i’s. In each iteration, the capping algorithm
reduces the length of at least one vector by at least half, and henneo@y% iteration of
capping, all vectors have length at mdst We show above that* (V) < k?28L4*loed which, by

A= of the capping algorithm, gives

_d
2¢A(V)

N , &2 ,
nlog A <n|(2L+logd+ dlogk + 8Ld logd—l—logg :O(Ld logd—l—dlogk:)

where we use that is a small constant. Each step tak@énd) to computen norms of d-
dimensional vectors, an@(d?) for computing ad x d matrix and multiplying it with a vector
for scaling operation. Therefore, the runtime of capping algorith@ (&nd?> log d + nd? log k).

Finally, we note that the input to local search algorithm are not the same as original input, which
we assume with bit complexit§ on each entry. However, by Lemma 4.3.1 which shows that the
objective of capped vectors and original vectors are at most constant factors within each other, the
gap between the initial objective (which is finite) and optimum changes by at most a constant factor,

and hence the complexity of number of swaps remains unchanged. The total runtime of modified

Lknd® log d+knd?log k
J

local search is therefor@ ( > dominated by the local search time complexity.

4.8 Greedy Algorithm for D-DESIGN

To prove Theorem 4.1.2, we again use the convex programming relaxation f@r-thesIGN
problem. Recall the relaxatiol)-REL) and its dual D-REL-DUAL) shown in figure 2.2b¢53
denote the be the common optimum value DFREL) and its dual O-ReEL-DUAL). I* denote
the indices of the vector in the optimal solution andd@t= det (},_;. vivj)é be its objective.

Observe thatb]? > log ®. Now, Theorem 4.1.2 follows from the following theorem with an
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Algorithm 4.8 Greedy algorithm fo)-DESIGN
Input: V =v1,...,v, e RLd <k €N, Sy C [n].
Xo=2"jes, v
Fori=1tok — |[Syl:

Ji = argmax; ¢, det(X +vv])
Si=Si1 U{ji}, Xs = Xioq +vj,0])
I = S50, X = Xi—5|
Return(/, X).

appropriate initialization of first vectors which will be specified later.

Theorem 4.8.1.For any set of vectors,, ..., v, € R?, supposes, C [1,n] is a set of size such
1
thatdet (3°,cq, vivy )? > %k - ¢P for somel >k > 0andk > 4 (log £ 4 loglog 1). Let(I, X)

be the solution returned by Algorithm 4.8. Then,
det(X) > (1 — 5¢)p°

Before we prove Theorem 4.8.1, we state and prove the following theorem, which better con-
veys main ideas of the proof.

1 .
Theorem 4.8.2.For any set of vectors,, . .., v, € R¢andk > C”O%, supposes, C [1,n] is a set

of sized such thatdet (3., viv])é > 41 ¢P for somel > k > 0. Lets = max{dloglog 1,0}

and (I, X) be the solution returned by pickirig— d + s vectors greedily. Then,
det(X) > (1 — 4¢)p°

Theorem 4.8.2 gives a bi-criteria approximation where we pick small nusntfezxtra vectors
than the budget while obtaining near-optimal solution. These&ectors are required to improve

the initial approximatiorf s to a ratio¢ independent of. or x.

Theorem 4.8.2To prove this theorem, we show the following two lemmas. First lemma shows the

increase in the solution value in each greedy step.
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e(pD
Lemma 4.8.3.For t & [0,k — [Sy| — 1], det(X;1) > det(X,) (1+ et )

Next lemma shows that this recursion leads to the desired bound in the theorem.

1/d
Lemma4.8.4.Letl > 0. Letz, ...,z besuchthatfot € [0, k—(—1], z,11 > 2z (1 + k%) .
Then,

1. If zp < ¢, then for anys > dloglog %2, we have

S d
Zg = —

ek
2. If 2o > 4, then we have

k—d—1(¢ 2d k:
Zk—KZT

D

¢ .
Proof of Theorem 4.8.2 follows from these two lemmas by defining- W in the
bound in Lemma 4.8.3. Lemma 4.8.4 implies that for any initi@pproximation withd initial
vectors to theD design problem of vectors,s = dlog log% vectors is enough to guarantee
i-approximation. Then, the second bound of Lemma 4.8.4 applies for the rest of the greedy

algorithm. We now prove these two lemmas.

Lemma 4.8.3By definition, det(X;,1) = max;e,) det(X; + v;v) ). By Lemma 4.4.2det (X, +

vjv, ) = det(Xy) (14 v X 'v;). Hence,

det(Xiy1) = det(Xy) (1 + maxv, X, v]) (4.17)

jelm]

Next, we lower boundnax;c, v; X; 'v; by constructing a feasible solution to th&®{REL-

DuAL). Let

1
Y = aX;, W= maXUTY v; = —maxv; X v;
i€m] a jeln]
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wherea will be fixed later. Then(Y, 1) is a feasible solution of/p-REL-DUAL). Hence,

1 E o1 -
(b? < p log det(aX;) + ia Ijréz[ln)j; U;Xt Ty —1

which implies

d 1
da (gb? +1—loga — 7 log det(Xt)) < maxv; X; 'v;

k jelm] ’

Setting,a = et

Teiixya We get

D D D
d €% i et
max v, X; 'v; >

| d
>0 O P o logdet(X) | = S
Jem) a2 = et (X, )/ (“bf +1—log o — glosdet(Xe) | = pania

Substituting the bounds in equation (4.17), we get

e??
det(XtH) Z det(Xt) (1 + gw> .

This finishes the proof of Lemma 4.8.3 H

=

Lemma 4.8.4We first prove the first bound. The recursion implies tﬁzgt > <k%> , Which is
equivalent to
d—1

1. d
log 2,41 > p log z + 7 log 2 (4.18)

Defineq, := log ¢ — log 2. If a, < 0 for anyu < s, then we are done because> z, > <. Else,

we can rearrange terms to obtain

G < (1 _ é) " (4.19)
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Hence, we have

where the last inequality follows from> loglog 2. Thereforelog ¢ — log z, = a, < 1, giving
the desired bound.
To prove the second bound, the recursion is equivalent to

log 241 > %llog (1 + i) (4.20)

Zt kzt

It is clear thatz; is an increasing sequencetimence,% < % = e. We usdog(1+z) > 2 for
0 < x < e (by concavity oflog x) to lower bound the right-hand-side of (4.20) above inequality

to obtain

log@>1~ d - 1
z d ekz  ekz

1
Thus, by using” > 1 + z, we have™ > e > 1 + let which implies

Z. >z + —
t+1 = 2t ok

Therefore, we obtain, > i forall ¢t > 0.
Next, we apply the bounidg(1+x) > = — % =z (1 — £) wheneve0 < z on the right-hand-

side of (4.20) to obtain

s 1d d 1 2d
log L > = 2 (1 = > — . (1-=
8 2 d kzt ( 2k2t> - th t
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where the last inequality comes from > i Thus, applyinge® > 1 + z, we haveZtZ—j1 >

1+ kLZt - (1 = 24), which implies
1 2d

> - = 4.21
Zt41 2 2+ R ( )

Summing (4.21) front = dtot = k — ¢ — 1 gives

~ g hmd=t=-1 2/l 1 1
Tkt = 2 2 E\d a1 T E—r-1
k—d—t¢ 2d. k
>

=Tk k *d

asdesired. n

Now we prove Theorem 4.8.2. We first pigkvectors greedily to guarantee that> % (If

20 > i, thens = 0.) Substitutingd = d andk > &fl— in Lemma 4.8.4 gives

d k
>1_ = _
Z—p = 1 2 (2 -+ 210g d)

2 1 1
61 (1+10g—+loglog—) > 1 —4de
og = € €

€

>1—

where the second inequality follows froﬁr(l + log x) being decreasing function an> 1, and

the last inequality is by + = < e” with z = log L. O
We are now ready to prove the main theorem.

Theorem 4.8.1The proof is identical to the proof of Theorem 4.8.2 except that, after usiag
log log % vectors to obtain}k-approximation, we only take — d — s greedy steps instead bf— d

greedy steps. Hence, we get d + s to the second bound of Lemma 4.8.4 to obtain

2pp > ———— — —log—=1——|2+2log— .

k—2d—s 2d . k d k s
k k d k d
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We havel — ¢ (2 + 21og £) > 1—4eidentical to the proof of Theorem 4.8.2. By> ¢ loglog 1 =

2, we have; < ¢, completing theproof. n

We finally note on combinatorial algorithms for setting initial solution of sizeOne may
use volume sampling algorithms to achi€ix@pproximation to optimal objective in for picking
vectors [AB13]. Alternatively, we can perform local search on inifigkectors to obtair/(1 + ¢)-
approximation in time polynomial i@, as shown in Section 4.6. Since we know that the relaxation
gaps ofA- and D- optimal design are at mog_’fr, we can bound the optimum values of design
problems between picking and k vectors to be at most multiplicative factor apart [AB13,
NST19]. The approximation ratios of two algorithms are hememddk (1 + o), respectively. We
formalize this argument and the result with locally optimal initial set as the following statement,

which proves Theorem 4.1.2.

Corollary 4.8.5. Greedy algorithm initialized by a local optimal set of sizesturns a(1 + 5¢)-

approximation whenever > 2(log + + loglogd + 1).

We first argue the ratio of optimu-DESIGN values when the size of the setdsand k.

i

Denote¢®(d), ¢° (k) = ¢P the optimumD-DESIGN objectivedet (3", 4 W}T)é on sized, k,
respectively. Denote?(d),¢? (k) = ¢7 the common optimum value of{-REL) and its dual

(D-REL-DuUAL) for size constraints af, & respectively.

Claim 21. We have
¢° (k) < koP(d)

Proof. Because D-REL) is a relaxation ofD-DESIGN (up tolog scale), we have
exp ¢ (k) > ¢°(k),  exp@?(d) > ¢°(d)
We may scale any optimal solution oD¢REL) with size £ to sized by applyingz; := %xi
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coordinate-wise. Therefore, we have

d
9P (d) > ¢ (k) + log

k

=1~ This follows from the

Finally, we know that the integrality gap of-REL) is at most
approximation result of local search algorithm which compares the objective value of returned set
to the objective to the convex relaxation. (This exact bound of the gap also follows from previous

work on proportional volume sampling [NST19].) We apply this gap for size budlgeebbtain

exp ¢7 (d) < d¢® (d)
Therefore, we have
P (k) < expoP(k) < exp 63(d) < ko(d) (4.22)
asdesired. O

Corollary 4.8.5. Theorem 4.1.1 implies that a local search solution satigfeggproximation when
budget size ig. Hence, by Claim 21, a local solutiondg-approximation compared tO-DESIGN
with a size budget of.

We now apply Theorem 4.8.1: it is sufficient to show that

1 1
k> C—i <log — + log log —) (4.23)
€ € K

for x = %, so the result follws. ]

4.9 Greedy Algorithm for A-DESIGN

In this section, we prove Theorem 4.1.4. As remarked in the case of local search algorithm, we

need to modify the instance to cap the length of the vectors in the case of greedy algorithm as well.
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This is done by Algorithm 4.2. As shown in Lemma 4.3.1, the value of any feasible solution only
increases after capping and the value of the convex programming relaxation increases by a small
factor if £ is large.

We now show that the greedy algorithm run on these vectors returns a near optimal solution.

For any input vector¥” = {vy,...,v,}, the primal program isl-ReL (V") and the dual program is

Algorithm 4.9 Greedy algorithm ford-DESIGN
Input: U = uy,...,u, €RY d<keN,S, C [n].
Xo =2 s, Uil; -

Fori=1tok — |Syl:
Ji = argmin,gp, tr ((X + ujujT)_l)
Si=Si Uyt Xi=Xi + u]ujt
I'= Sk_is, X = X 5]
Return(/, X).

A-REL-DUAL (V). gb’lz\(V) denotes the (common) optimal value of objective values of the convex
program with input vectors frorir. I* denotes the indices of the vectors in the optimal solution of
A-DESIGN with input vector set/ and¢” (V) = tr ((ZZH* viv;)_1> be its objective. We show

the following theorem about Algorithm 4.9 in terms of capping lenfyth

IN

Theorem 4.9.1.Let ||u][2 < A, Sy C [n] of sizer > d such thatu((ZieSO wi] )”)

A
k™ (U) for somex > 1, andA = 4/ &%m. Let(/, X) be the solution returned by Algorithm 4.9.

Then we have

—1
Tl oo R S oa

tr(X 1) < (1 —

Similar to the analysis of local search fdrDESIGN, capping vector length is necessary to

obtain theoretical guarantee. We will optimize over the lenytlater in Theorem 4.9.4.

Theorem 4.9.1To prove the theorem, we show the following two lemmas:
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Lemma4.9.2.Foranyt € [0, k—[So|], letz = tr(X; ') /¢} (U). Then, forany € [0, k—|So|—1],

2

A
k (1 + z Ad)J;C(U))

Zip1 <z | 1=

Lemma 4.9.3.LetA > 0 and/ > 0. Suppose;; < z (1 — m) forall ¢ > 0, then

1. If zp > ¢, then for anys > 2Ak log(Az), we have

==

2. If zp < 1, we have

d+ ¢ B\ !
< |1————=2Alog—
Zke_( 2 Ogd)

Lemma 4.9.2 By definition,

tr(X,5}) = min tr <(Xt + ujujT)fl) .

J€ln]

By Sherman-Morrison formula,

Tyv—2
u; X; “u;
tr Xil =1tr Xil —maX#
( t+1) ( t ) ]G[n] 1+U;FX;1u]

Note thatu X; 'u; = (u;, X; 'u;). By Cauchy-Schwarz inequality,] X, 'u; is at most

[l 2| X5 sl = [lugll2y/u] X 2. Since,[|u; |3 < A, we getu] X luy < (/A u] X ;.

Hence,

wl X, 2,
tr(X,;Y) < tr(X;!) — max T — (4.24)

TRl VA ] X Py
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Next, we lower bounahax e, ujTXt‘?uj by finding a feasible solution td-REL-DUAL. Let,

Y =~X;?, A =maxu; Yu] Y max u X u;j
jet] 7 icln)

wherey > 0 will be fixed later. Then(Y, \) is a feasible solution tel-ReL-DUAL (U). Hence,

QS?(U) > 2tr ((vXt_2)1/2> k:'ymaxu X, u;

JE[n]

maquX uj > k_lv 2y tr(X; ) — gbfc‘(U))

JEMN]

)
tr(X; 1)

2
Substitutingy = < ) , We get

T tr(X H)?
maxu X U] = m

J€n]

ez s a monotonically increasing function for> 0 if ¢ > 0. Hence,

tr(X; )2

- ul X, N RA (D)
LA Xy e
Substitutingz; = ¢A(U)) we get
_2 _
max ujTXt ') > e, 1) “

jJE€[n] 1 4 /A . u‘;l—X;2uJ - k 1 + 2 Ad)i(U) .

Substituting this inequality in Equation (4.24), we get

zZt

tr(Xh) < (X7 [ 1- —

160



Substitutingz, = tr(X; ') /¢ (U) andzyy = tr(X,}}) /¢4 (U), we get

2

A
k (1 + 2 Ad’f,‘f”)

This finishes the proof of Lemma 4.9.2 ]

Zgp1 <z | 1=

Lemma 4.9.3We first prove the first bound. H, < % for anyt < s, then we are done, so assume

zA > 1. The recursion then implies

SN T Ry S
= k(2ah) ) 2kA

Therefore,
< 1 LY
= 2kA
< z e—ﬁs < z e—logAzo — l
= <0 = <0 A
as desired.
We now prove the second bound. Legt= Zit Then the recursion;;; < z (1 — m)
can be rewritten as
-1
Q41 1
— > (1-— 4.25
Qy - ( lf (A + a,t)> ( )
-1
Applying (1 — m) > 1+ m and rearranging terms, we obtain
Q¢ 1 A
Qi1 2+ ————=0G+ - — 4.26
t+1 — WUt k(A+at) t k k(A+at) ( )

It is obvious from (4.25) thai, is an increasing sequence, and hemce ao > A forall ¢ > 0.
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So (4.26) implies
A 1

1
at+12at+%_m:at+% (4.27)

Therefore, we have, > ﬁ forall ¢t > 0.

Using this bound; > 5=, the recursion (4.26) also implies

atﬂzat—i—g—%ﬁ):at—l—%—% (4.28)
Summing 4.28 fromt = dtot =k — ¢ — 1 gives
Qp—y > Qg + k—;i—ﬁ —2Ak€1%
t=d
= W —2A logg
proving the desiretbound. ]

We now prove Theorem 4.9.1. The first bound of Lemma 4.9.3 shows that with initial approxi-
mationx, we requires = max{0, 2Ak log(Ax)} stepsto ensur§ approximation ratio. After that,
we can pickk — r — s vectors. Hence, we apply the second bound of Lemma 4.9.3/with + s

to get the approximation ratio of as

~1
Zhot < <1 — M —2Alog S)

k
d k -
= (1 - ZT —2A (log - + max {log Ax, 0}))
-1
_ (1 _d+r 2M log k max{Ar, 1})
d
proving the desiretbound. ]

Next, we tuneA in Theorem 4.9.1 and use Lemma 4.3.1 to obtain the final bound, from which
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Theorem 4.1.4 will follow.

Theorem 4.9.4.For input vectors’ = {vy,...,v,} and parametek € N, letU = {uy,...,u,}

be the set of vectors returned by the Capping Algorithm 4.2 with input vectoraed A = ﬁ.

Let Sy C [n] be an initial set of size > d wheretr ((Zieso uiuj)_1> < k- ¢"(U) for some

k > 1. Let(I, X) be the solution returned by Algorithm 4.9 with vector 8eand parametek. If

d(log k+log? 1 )
€3

k>=t+ ande < 0.0001, then

((Zvl )) (14 6000€)™ (V)

Proof. By Lemma 4.3.1, substituting., we have

PR (U) < (1 5000d) (¢4 (V) + 150e0™ (V)

< (14 5500€)¢™ (V) (4.29)

where the last inequality follows from* (V) > ¢#(V), k > 4. ande < 0.0001. Thus, we have

_[ARU) [ deR(U) /d(1 + 5500€) d
B J;c B ekgzﬁfA(V) = ek = 2\/;

Next, Theorem 4.9.1 implies that

-1
tr(X 1) < (1 - d"l:’" — 2Alog %f’“}) S (U) (4.30)
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Note that

2A10gkmax{A/<c 1} <2010 gk

<4\/ log +4\/ log/ﬁ
Since =

log = is a decreasing function an> 8, applyingk > > 4

ewehave
dlo k 1
\ ek gd_l

1
(3 log + log log + log 2) <4e

where the last inequality follows from< 0.0001. Also, applyingk
andk > £, we have

E3K 63
1 <

\/—logk < ¢

ek ER=6

=l
IA
w1
IA
M

Hence, (4.30) implies that

tr(X 1) < (1 —22¢)" ¢A(U)

Combining (4.31) with Lemma 4.3.1 and (4.29) gives

tr (Z Uﬂ);r> <tr(X H<(1- 226)_1 (1 4+ 5500¢)¢™ (V)

(4.31)

< (1 4+ 6000€)p™ (V)
where the last inequality follows from< 0.0001

O
We note an efficient combinatorial algorithm of volume sampling [AB13, DW17a] that gives

Z-approximation to theA-DESIGN problem of selecting/ vectors (note that these randomized
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algorithms can be derandomized, e.g. by rejection sampling). Alternatively, from our result on
approximate local search algorithm fdrDESIGN in Section 4.7, we can also initialize with d
vectors for an absolute constanand perform local search algorithm to obtdin- 0.0001 + §
approximation in time polynomial i% for some smalb. Similar to Claim 21, we can relate the
optimum of A-DESIGN of size budget! < r < k andk to be at most facto;ﬁ_fﬁ apart [AB13,
NST19]. Hence, the volume sampling on initial set of siz&nd local search on initial set of size

cd give approximation ratio of and#(l +0.0001 +9) < §, respectively; that is; can be

set ton or § in Theorem 4.9.4 and we adjustaccordingly. Using the local search on initial

vectors to set the value afandr, we prove Theorem 4.1.4.

Proof of Theorem 4.1.4Suppose > C' - E% log? % for some absolute constafit > 0 to be spec-

. . .. r d(log2 n-i—logzl)
ified later ande < 0.0001. By Theorem 4.9.4, it is sufficient to have > = + —————=~,

wherex = § andr = cd by initializing the greedy algorithm with an output from an approxi-

mate local search algorithm of sizé for an absolute constant By checking the derivative of
O, 2k o 21 . . . . .

flk) =k —< w f(k) is increasing whefid log £ < ke®, which is true for a large

enoughC. Hence, we only need to shofi(k) > 0 for k = C - 4 log® . The conditionf (k) > 0

is equivalent to

log? 1

1
——< 4 log® — + cé? (4.32)
€

1
C'log® = > log? 3
€ €
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Itis clear thatog” 2 + ce? < $log® L for C' > 3 + c. We also have

, C log? %
3

1 1\?
log = <logC’ + 3log — + 2loglog —)
€ €

1\ 2
< (logC—i—510g —)
€

2
1
S(\/€—5+510g—>
2 €
2
< \/CI L
- QOge

where we use < e® for z = log 1, log C < +/C — 5 for a sufficiently largeC, andlog X > 1 for

the three inequalities above, respectively. Hence, we finished the proof of.(4.32 n
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CHAPTER 5
MULTI-CRITERIA DIMENSIONALITY REDUCTION WITH APPLICATIONS TO
FAIRNESS

5.1 Introduction

Dimensionality reduction is the process of choosing a low-dimensional representation of a large,
high-dimensional data set. It is a core primitive for modern machine learning and is being used
in image processing, biomedical research, time series analysis, etc. Dimensionality reduction can
be used during the preprocessing of the data to reduce the computational burden as well as at the
final stages of data analysis to facilitate data summarization and data visualization [RSA99, IP91].
Among the most ubiquitous and effective of dimensionality reduction techniques in practice are
Principal Component Analysis (PCA) [Pea0l, Jol86, Hot33], multidimensional scaling [Kru64],
Isomap [TDSLOO], locally linear embedding [RS00], and t-SNE [MHO08].

One of the major obstacles to dimensionality reduction tasks in practice is complex high-
dimensional data structures that lie on multiple different low-dimensional subspaces. For example,
Maaten and Hinton [MHO08] address this issue for low-dimensional visualization of images of ob-
jects from diverse classes seen from various viewpoints, or Samadi et al. [Sam+18] study PCA
on human data when different groups in the data (e.g., high-educated vs low-educated or men vs
women) have an inherently different structure. Although these two contexts might seem unrelated,
our work presents a general framework that addresses both issues. In both setting, a single criteria
for the dimensionality reduction might not be sufficient to capture different structures in the data.
This motivates our study of multi-criteria dimensionality reduction.

As an illustration, consider applying PCA on a high dimensional data to do a visualization

analysis in low dimensions. Standard PCA aims to minimize the single criteria of average recon-
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struction error over the whole data. But the reconstruction error on different parts of data can be
widely different. In particular, [Sam+18] show that on real world data sets, PCA has more recon-
struction error on images of women vs images of men. A similar phenomenon is also noticed on
other data sets when groups are formed based on education. Unbalanced average reconstruction er-
ror or equivalently unbalanced variance could have implications of representational harms [Cral7]

in early stages of data analysis.

Multi-criteria dimensionality reduction.  Multi-criteria dimensionality reduction could be used

as an umbrella term with specifications changing based on the applications and the metrics that the
machine learning researcher has in mind. Aiming for an output with a balanced error over differ-
ent subgroups seems to be a natural choice as reflected by minimizing the maximum of average
reconstruction errors studied by [Sam+18] and maximizing geometric mean of the variances of the
groups, which is the well-studied Nash social welfare (NSW) objective [KN79, NJ50]. Motivated

by these settings, the more general question that we would like to study is as following.

Question 1. How might one redefine dimensionality reduction to produce projections which opti-

mize different groups’ representation in a balanced way?

For simplicity of explanation, we first describe our framework for PCA, but the approach is
general and applies to a much wider class of dimensionality reduction techniques. Consider the
data points as rows of anxn matrix A. For PCA, the objective is to find anx d projection matrix
P that maximizes the Frobenius norfid P||% (this is equivalent to minimizing the reconstruction
error). Suppose that the rows df belong to differengroups based on demographics or some
other semantically meaningful clustering. The definition of these groups need not be a partition;
each group could be defined as a different weighting of the data set (rather than a subset, which
is a 0/1 weighting). Multi-criteria dimensionality reduction can then be viewed as simultaneously
considering objectives on the different weightingsAfi.e., A;. One way to balance multiple

objectives is to find a projectioff that maximizes the minimum objective value over each of the

168



groups (weightings):

max min |[|A;P|% = (AT A;, PPT). (FAIR-PCA)
P:PTp=J, 1<i<k

(We note that our KIR-PCA is different from one in [Sam+18], but equivalent by additive and
multiplicative scalings.) More generally, |8%; denote the set of all x d projection matriced,

i.e., matrices withi/ orthonormal columns. For each grodp we associate a functiofy : P; — R
that denotes the group’s objective value for a particular projection. Foy aly} — R, we define
the(f, g)-multi-criteria dimensionality reduction problem as findind-dimensional projectio®

which optimizes

gl%)xg(fl(P),fg(P), o fr(P)). (MULTI-CRITERIA-DIMENSION-REDUCTION)
€Pa

In the above example of max-min Fair-PCAis simply themin function andf;(P) = || A; P||* is
the total squared norm of the projection of vectorsiin Other examples include: defining each
f; as the average squared norm of the projections rather than the total, or the marginal variance —
the difference in total squared norm when usihgather than the best possible projection for that
group. One could also choose the product functon, ..., y,) = []; v: for the accumulating
functiong. This is also a natural choice, famously introduced in Nash'’s solution to the bargaining
problem [NJ50, KN79]. This framework can also describettiepower mean of the projections,
e.9.£(P) = AP andg(ys.....u) = (S ') "

The appropriate weighting df objectives often depends on the context and application. The

central motivating questions of this paper are the following:
o What is the complexity dfAIR-PCA?

< More generally, what is the complexity MULTI-CRITERIA-DIMENSION-REDUCTION ?

Framed another way, we ask whether these multi-criteria optimization problems force us to in-

169



cur substantial computational cost compared to optimiziager A alone. Samadi et al. [Sam+18]
introduced the problem of#fR-PCA and showed how to use the natural semi-definite relaxation
to find a rank-{ + k£ — 1) approximation whose cost is at most that of the optimal rédalprox-
imation. Fork = 2 groups, this is an increase ofin the dimension (as opposed to the naive
bound of2d, by taking the span of the optimaldimensional subspaces for the two groups). The
computational complexity of finding the exact optimal solution tof=P CA was left as an open

guestion.

5.1.1 Resultsand Techniques

Let us first focus on KiR-PCA for ease of exposition. The problem can be reformulated as the
following mathematical program where we denét®? by X. A natural approach to solving this

problem is to consider the SDP relaxation obtained by relaxing the rank constraint to a bound on

the trace.
Exact FAIR-PCA SDP Relaxation of RIR-PCA
max 2 max 2
(ATAL X)) >z ie{l,... k} (ATA, X) >z ie{l,... Kk}
rank( X) < d tr(X) <d
0< X<T 0= X<=<1T

Our first main result is that the SDP relaxation is exact when thergvargroups. Thus finding
an extreme point of this SDP gives an exact algorithm fRFP CA for two groups. Previously,
only approximation algorithms were known for this problem. This result also resolves the open

problem posed by Samadi et al. [Sam+18].
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Theorem 5.1.1.Any optimal extreme point solution to the SDP relaxationfeIR-P CA with two

groups has rank at mogt Therefore2-group FAIR-PCA can be solved in polynomial time.

Given m datapoints partitioned inté < n groups inn dimensions, the algorithm runs in
O(nm + n%%) time. O(mnk) is from computingA? A; andO(n%?) is from solving an SDP over
n x n PSD matrices [BTNO1]. Our results also hold for thesM1-CRITERIA-DIMENSION-
REDUCTION wheng is monotone nondecreasing in any one coordinate and concave, angl each

is an affine function of? P” (and thus a special case of a quadratic functioR)n

Theorem 5.1.2.There is a polynomial time algorithm f@argroupMULTI-CRITERIA-DIMENSION-
REDUCTION problem wherny is concave and monotone nondecreasing for at least one of its two

arguments, and each is linear in PP, i.e., f;(P) = (B;, PP") for some matrixB;(A).

As indicated in the theorem, the core idea is that extreme-point solutions of the SDP in fact
have rankd, not just trace equal t@.

For k > 2, the SDP need not recover a rasikolution. In fact, the SDP may be inexact even
for k = 3 (see Section 5.7). Nonetheless, we show that we can bound the rank of a solution to the
SDP and obtain the following result. We state it fanR-PCA, though the same bound holds for
MuULTI-CRITERIA-DIMENSION-REDUCTION under the same assumptions as in Theorem 5.1.1.

Note that this result generalizes Theorem 5.1.1.

Theorem 5.1.3.For any concavey that is monotone nondecreasing in at least one of its ar-
guments, there exists a polynomial time algorithm FarrR-PCA with k£ groups that returns a
d+ [/2k + 411 — gj-dimensional embedding whose objective value is at least that of the optimal

d-dimensional embedding. §fis only concave, then the solution lies in at mést 1 dimensions.

This strictly improves and generalizes the bound-pf:—1 for FAIR-PCA problem. Moreover,
if the dimensionality of the solution is a hard constraint, instead of toleratingO(v/k) extra

dimension in the solution, one may solvaiR-PCA for target dimensiod — s to guarantee a
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solution of rank at most. Thus, we obtain an approximation algorithm foxiR-PCA of factor

O(Vk)
1 2vh,
Theorem 5.1.4.Let Ay, ..., A, be data sets of groups and suppose:= |/2k + ;11 = %J <d
Then there exists a polynomial-time approximation algorithm of fagter 2 = 1 — 2K 1o

FAIR-PCA problem.

That is, the algorithm returns a projeete P, of exactrankd with objective at least — % of
the optimal objective. More details on the approximation result are in Section 5.3. The runtime of
Theorems 5.1.2 and 5.1.3 depends on access to first order orgcétbstandard application of
the ellipsoid algorithm would tak€(n?) oracle calls.

We now focus our attention to the marginal loss function. This measures the maximum over
the groups of the difference between the variance of a common solution férgreips and an
optimal solution for an individual group (“the marginal cost of sharing a common subspace"). For
this problem, the above scaling method could substantially harm the objective value, since the
target function is nonlinear. MLTI-CRITERIA-DIMENSION-REDUCTION captures the marginal
loss functions by setting the utility;(P) = ||A;P||% — maxgep, ||A;Q||% for each group and
g(f1, fo,. .., fx) :=min{ f1, fo, ..., fx}, giving an optimization problem

: AOl2 — [|A, P2 A
s o (|41 — 14,715 .0

and the marginal loss objective is indeed the objective of the problem.
In Section 5.4, we develop a general rounding framework for SDPs with eigenvalue upper
bounds and: other linear constraints. This algorithm gives a solution of desired rank that violates

each constraint by a bounded amount. The precise statement is Theorem 5.1.8. It implies that for
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FAIR-PCA with marginal loss as the objective the additive error is

[V/2IS]+1]
A(A) := max Z oi(As)

sCml 4

whereds = 5 325 Ai-
Itis natural to ask whetherdtR-P CA is NP-hard to solve exactly. The following resultimplies

that it is, even for target dimensieh= 1.

Theorem 5.1.5.The max-mirFAIR-PCA problem for target dimensiod = 1 is NP-hard when

the number of groupk is part of the input.

This raises the question of the complexity for constant 3 groups. Fork groups, we would
havek constraints, one for each group, plus the eigenvalue constraint and the trace constraint; now
the tractability of the problem is far from clear. In fact, as we show in Section 5.7, the SDP has an
integrality gap even fok = 3, d = 1. We therefore consider an approach beyond SDPs, to one that
involves solving non-convex problems. Thanks to the powerful algorithmic theory of quadratic
maps, developed by Grigoriev and Pasechnik [GP05], it is polynomial-time solvable to check
feasibility of a set of quadratic constraints for any fi¥edAs we discuss next, their algorithm can
check for zeros of a function of a set bfquadratic functions, and can be used to optimize the
function. Using this result, we show that fér= £ = O(1), there is a polynomial-time algorithm

for rather general functiongof the values of individual groups.

Theorem 5.1.6.Let the fairness objective hg: R*¥ — R whereg is a degree/ polynomial in
some computable subring&f and eachf; is quadratic forl < i < k. Then there is an algorithm

to solve the fair dimensionality reduction problem in titden )+,

By choosingg to be the product polynomial over the usual, +) ring or themin function
which is degreé in the (min, +) ring, this applies to the variants oAR-PCA discussed above

and various other problems.
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SDP extreme points. For k£ = 2, the underlying structural property we show is that extreme
point solutions of the SDP have rank exactlyFirst, fork = d = 1, this is the largest eigenvalue
problem, since the maximum obtained by a matrix of trace equiatenm also be obtained by one

of the extreme points in the convex decomposition of this matrix. This extends to trace equal to
anyd, i.e., the optimal solution must be given by the #opigenvectors ofi” A. Second, without

the eigenvalue bound, for any SDP witlconstraints, there is an upper bound on the rank of any
extreme point, oD (v/k), a seminal result of Pataki [Pat98] (see also Barvinok [Bar95]). However,
we cannot apply this directly as we have the eigenvalue upper bound constraint. The complication

here is that we have to take into account the constrairt 7 without increasing the rank.

Theorem 5.1.7.LetC and A4, ..., A,, ben xnreal matricesd < n, andby,...b,, € R. Suppose

the semi-definite progra@DP(I):

min(C, X') subject to (5.2)
(A, X) < b V1<i<m (5.3)
tr(X) < d (5.4)
0=X = I (5.5)

where<; € {<,>,=}, has a nonempty feasible set. Then, all extreme optimal solulon®
SDIP(I) have rank at most* := d+[/2m + 2 — 2|. Moreover, given a feasible optimal solution,

an extreme optimal solution can be found in polynomial time.

To prove the theorem, we extend Pataki [Pat98]'s characterization of rank of SDP extreme
points with minimal loss in the rank. We show that the constrdints X < I can be interpreted
as a generalization of restricting variables to lie betw@and1 in the case of linear programming
relaxations. From a technical perspective, our results give new insights into structural properties of

extreme points of semi-definite programs and more general convex programs. Since the result of
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[Pat98] has been studied from perspective of fast algorithms [BVB16, BM03, BM05] and applied
in community detection and phase synchronization Bandeira, Boumal, and Voroninski [BBV16],

we expect our extension of the result to have further applications in many of these areas.

SDP iterative rounding. Using Theorem 5.1.7, we extend the iterative rounding framework for
linear programs (see [LRS11] and references therein) to semi-definite programs, wherée the
constraints are generalized to eigenvalue bounds. The algorithm has a remarkably similar flavor.
In each iteration, we fix the subspaces spanned by eigenvectoré avithl eigenvalues, and argue
that one of the constraints can be dropped while bounding the total violation in the constraint over
the course of the algorithm. While this applies directly to therRFPCA problem, in fact is a
general statement for SDPs, which we give below.

Let A = {A,,...,A,} be a collection of» x n matrices. For any sét C {1,...,m}, let

o;(S) thei'™ largest singular of the average of matricﬁszies A;. We let

L\/2I5]+1]
A(A) = max > i)

i=1

Theorem 5.1.8.Let C be an x n matrix andA = {4,,..., A,,} be a collection of» x n real

matrices,d < n, andby, ...b,, € R. Suppose the semi-definite progr&mp:

min(C, X') subject to

V
&
<
—_
N
N
3

tr(X) < d

0=X = I,

has a nonempty feasible set and }ét denote an optimal solution. The AlgorithmeRATIVE-
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SDP(see Figure 5.1) returns a matriX such that

1. rank of X is at mostd,

2. (C,X) < (C,X*),and

3. (A4;, X) > b — A(A) foreachl < i < m.

The time complexity of Theorems 5.1.7 and 5.1.8 is analyzed in Sections 5.2 and 5.4. Both
algorithms introduce the rounding procedures that do not contribute significant computational cost;

rather, solving the SDPis the bottleneck for running time both in theory and practice.

5.1.2 Related Work

As mentioned earlier, Pataki [Pat98] (see also Barvinok [Bar95]) showed low rank solutions to
semi-definite programs with small number of affine constraints can be obtained efficiently. Re-
stricting a feasible region of certain SDPs relaxations with low-rank constraints has been shown to
avoid spurious local optima [BBV16] and reduce the runtime due to known heuristics and analysis
[BM03, BMO5, BVB16]. We also remark that methods based on Johnson-Lindenstrauss lemma
can also be applied to obtain bi-criteria results farF=PCA problem. For example, So, Ye, and
Zhang [SYZO08] give algorithms that give low rank solutions for SDPs with affine constraints with-
out the upper bound on eigenvalues. Here we have focused on single criteria setting, with violation
either in the number of dimensions or the objective but not both. We also remark that extreme point
solutions to linear programming have played an important role in design of approximation algo-
rithms [LRS11] and our result add to the comparatively small, but growing, number of applications
for utilizing extreme points of semi-definite programs.

A closely related area, especially toudri-CRITERIA-DIMENSION-REDUCTION problem,
is multi-objective optimization which has a vast literature. We refer the reader to Deb [Deb14]
and references therein. We also remark that properties of extreme point solutions of linear pro-

grams [RG96, GRSZ14] have also been utilized to obtain approximation algorithms to multi-
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objective problems. For semi-definite programming based methods, the closest works are on si-
multaneous max-cut [BKS15, Bha+18] that utilize sum of squares hierarchy to obtain improved
approximation algorithms.

The applications of multi-criteria dimensionality reduction in fairness are closely related to
studies on representational bias in machine learning [Cral7, Nob18, Bol+16] and fair resource
allocation in game theory [WVZX10, FB04]. There have been various mathematical formula-
tions studied for representational bias in ML [CKLV17, Cel+18, Sam+18, KAM19, KSAM19]
among which our model covers unbalanced reconstruction error in PCA suggested by Samadi et
al. [Sam+18]. From the game theory literature, our model covers Nash social welfare objective

[KN79, NJ50] and others [KS+75, Kal77].

5.2 Low-Rank Solutions of MULTI -CRITERIA -DIMENSION -REDUCTION

In this section, we show that all extreme solutions of SDP relaxationuafit CRITERIA-DIMENSION-
REDUCTION have low rank, proving Theorem 5.1.1-5.1.3. Before we state the results, we make
following assumptions. In this section, we ket R* — R be a concave function which is mono-
tonic in at least one coordinate, and mildly assume ghan be accessed with a polynomial-time
subgradient oracle and is polynomially bounded by its input. We are explicitly given functions
f1, f2, - .., fr which are affine inPP7T, i.e. we are given reat x n matricesBy, ..., B, and
constantsy;, as, ..., o € Randf;(P) = (B;, PP") + o.

We assume to beG-Lipschitz. For functionsfy, ..., fi, g that areL,, ..., L, G-Lipschitz,
we define are-optimal solution to( f, g)-MULTI-CRITERIA-DIMENSION-REDUCTION problem
as a projection matrixX € R**" 0 < X =< I, of rank d whose objective value is at most
Ge (Ele L?)l/2 from the optimum. In the context where an optimization problem has affine
constraintst;(X) < b; whereF; is L; Lipschitz, we also define-solution as a projection matrix
X e R™" 0 < X =< I, of rankd that violatesith affine constraints by at most ;. Note that the

feasible region of the problem is implicitly bounded by the constraink 7,,.
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In this section, the algorithm may involve solving an optimization under a matrix linear in-
equality, which may not give an answer representable in finite bits of computation. However, we
give algorithms that return anclose solution whose running time depends polynomiallj/otgr%
for anye > 0. This is standard for computational tractability in convex optimization (see, for ex-
ample, in [BTNO1]). Therefore, for ease of exposition, we omit the computational error dependent
on thise to obtain ane-feasible and-optimal solution, and define polynomial running time as
polynomial inn, k andlog <.

We first prove Theorem 5.1.7 below. To prove Theorem 5.1.1-5.1.3, we first show that extreme
point solutions in semi-definite cone under affine constraintsdnt¢l I have low rank. The state-
ment builds on a result of [Pat98]. We then apply our result 1oLM-CRITERIA-DIMENSION-
REDUCTION problem, which contains theallR-P CA problem. Finally, we show that existence of

low-rank solution leads to an approximation algorithm tof=P CA problem.

Proof of Theorem 5.1.7 Let X* be an extreme point optimal solution $®P(II). Suppose rank
of X*, sayr, is more than*. Then we show a contradiction to the fact tiat is extreme. Let

0 < [ < r of the eigenvalues ok™* be equal to one. If > d, then we havé = r = d since
tr(X) < d and we are done. Thus we assume that d — 1. In that case, there exist matrices

Q, € R Q, € R and a symmetric matriA € R—9*"=0 such that

A O T
X" = <Q1 QQ) I (Ql Q2> - QlAQlT + Q2Qg
0 I

where0 < A < I, ;, QTQ, = I,_;, QT Q- = I, and that the columns @§, and@, are orthogonal,

e. Q = (Q1 Qz) has orthonormal columns. Now, we have

(A, X7) = (A, QIAQ{ + Q2Q5 ) = (Q AiQ1, A) + (A;, Q2Q;)

andtr(X*) = (Q] Q1, A) + tr(Q2Q4 ) so that(A;, X*) andtr(X*) are linear inA.
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Observe the set of x s symmetric matrices forms a vector space of dimen§§§H—) with the
above inner product where we consider the matrices as long vectons+If < %2’”1) then
there exists dr — 1) x (r — [)-symmetric matrixA # 0 such that{Q{ A;Q,, A) = 0 for each
1 <i<mand(QQi,A) =0.

But then we claim tha®, (A + §A)Q| + Q.Q7 is feasible for smalb > 0, which implies a
contradiction taX ™ being extreme. Indeed, it satisfies all the linear constraints by construction of

A. Thus it remains to check the eigenvalues of the newly constructed matrix. Observe that

- . A+6A 0O -
Q1A+ 0A)Q, +Q:Qy =Q Q
0 I
_ o _ _ A£6A O
with orthonormalk?. Thus it is enough to consider the eigenvalueg of
0 I

Observe that eigenvalues of the above matrix are exaahes and eigenvalues af+ JA.
Since eigenvalues of are bounded away frofhand1, one can find smalf such that the eigen-
value of A + §A are bounded away frothand1 as well, so we are done. Therefore, we must have
m+ 1> 00D which impliesr — 1 < —L 4 /2m + 9. Byl < d — 1, we haver < r*.

For the algorithmic version, given feasiblg, we iteratively reduce — [ by at least one until
m+12> w Whilem + 1 < w we obtainA by using Gaussian elimination.
Now we want to find the correct value afd so thatA’ = A + §A takes one of the eigenvalues to
zero or one. First, determine the sign(éf, A) to find the correct sign to mové that keeps the
objective non-increasing, say it is in the positive direction. Since the set of feaSiHeconvex
and bounded, the raf(t) = Qi(A + tA)Q] + Q-Q, ,t > 0 intersects the boundary of feasible
region at a uniqué’ > 0. Perform binary search for the correct valuet'oédnd set) = ¢’ up to

the desired accuracy. Siné®; A,Q,,A) = 0 for eachl < i < m and{(Q{Q,A) = 0, the

additional tight constraint from moving’ < A + §A to the boundary of feasible region must be
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an eigenvalue constraift< X < I, i.e., at least one additional eigenvalue is now at 0 or 1, as
desired. We apply eigenvalue decompositiontand updat&), accordingly, and repeat.

The algorithm involves at most rounds of reducing — [, each of which involves Gaussian
elimination and several iterations (from binary search) of X < I, which can be done by
eigenvalue value decomposition. Gaussian elimination and eigenvalue decomposition can be done

in O(n?) time, and therefore the total runtime of SDP roundin@is*) which is polynomial. I

In practice, one may initially reduce the rank of given feasillaising an LP rounding (in
O(n3%) time) introduced in [Sam+18] so that the number of rounds of reducirg is further
bounded byt — 1. The runtime complexity is the@ (%) + O(kn?).

The next corollary is obtained from the bound- | < —% +4/2m + ?l in the proof of Theo-
rem5.1.7.

Corollary 5.2.1. The number of fractional eigenvalues in any extreme point solutiea SDP(I)

is bounded by /2m + 2 — 1 < |V2m +1].

We are now ready to state the main result of this section that we can find a low-rank solution
for MULTI-CRITERIA-DIMENSION-REDUCTION . Recall thatP, is the set of alln x d pro-
jection matricesP, i.e., matrices withi orthonormal columns and thg, g)-MULTI-CRITERIA-

DIMENSION-REDUCTION problem is to solve

max g(£1(P), fo(P), .. ., fu(P)) (5.6)

PePy

Theorem 5.2.2.There exists a polynomial-time algorithm to solyeg)-MULTI-CRITERIA-DIMENSION-
REDUCTION that returns a solutionX of rank at most* := d + | /2k + 1 — 2| whose objective

value is at least that of the optimadidimensional embedding.
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If the assumption that is monotonic in at least one coordinate is dropped, Theorem 5.2.2 will

hold with »* by indexing constraints (5.11) BDP(II) for all groups instead of — 1 groups.

Proof of Theorem 5.2.2 First, we write a relaxation of (5.6):

nax g((B1, X) + aq, ..., (B, X) + ay) subject to (5.7)
cRnXn

tr(X) <d (5.8)
0xX =1, (5.9)

Sinceg(z) is concave int € R* and (B;, X) + «; is affine inX € R™", we have thay as

a function of X is also concave inX. By assumptions o, and the fact that the feasible set

is convex and bounded, we can solve the convex program in polynomial time, e.g. by ellipsoid
method, to obtain a (possibly high-rank) optimal solutiére R™*". (In the case thaf; is linear,

the relaxation is also an SDP and may be solved faster in theory and practice). By assumptions on
g, without loss of generality, we letbe nondecreasing in the first coordinate. To reduce the rank

of X, we consider aSDP(II):

max (B1, X) subjectto (5.10)
XeRnxn

(B, X) = (B;,X) V2<i<k (5.11)
tr(X) < d (5.12)
0<X =< I, (5.13)

SDIP(II) has a feasible solutioR of objective(B;, X') and note that there afe— 1 constraints in
(5.11). Hence, we can apply the algorithm in Theorem 5.1.7 with- &£ — 1 to find an extreme
solution X* of SDP(II) of rank at most*. Sinceg is nondecreasing ifB;, X ), optimal solutions
to SDIP(II) gives objective valug at least the optimum of the relaxation and hence at least the

optimum of the original MILTI-CRITERIA-DIMENSION-REDUCTION problem. O
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Another way to state Theorem 5.2.2 is that the number of groups must ?éﬂéﬁﬁ) before
additionals dimensions in the solution matrik is required to achieve the optimal objective value.
Fork = 2, no additional dimension in the solution is necessary to attain the optimum. We state this

fact as follows. In particular, it applies toAlRR-PCA with two groups, proving Theorem 5.1.1.

Corollary 5.2.3. The(f, g)-MULTI-CRITERIA-DIMENSION-REDUCTION problem on two groups

can be solved in polynomial time.

5.3 Approximation Algorithm for F AIR-PCA

Recall that we require := [/2k + 1 — 2] additional dimensions for the projection to achieve
the optimal objective. One way to ensure that the algorithm outpdtsmensional projection is to
solve the problem in lower target dimensidn- s, then apply the rounding described in Section
5.2. The relationship of objectives between problems with target dimerdsionandd is at most
dff factor apart for RIR-PCA problem because the objective scales linearly Withgiving an
approximation guarantee of— 5. Recall that givem,, . .., A;, FAIR-PCA problem is to solve

max min HAZPHfp = <AiTAi,PPT>
P:PT p—, 1<i<k

We state the approximation guarantee and the algorithm formally as follows.

Corollary 5.3.1. Let A, ..., A, be data sets of groups and suppose:= [/2k + ; — 2] < d.

Then there exists a polynomial-time approximation algorithm of fatter 5 = 1 — %ﬁ) to

FAIR-PCA problem.

Proof. We find an extreme solutioX * of the FAIR-PCA problem of finding a projection from
to d — s target dimensions. By Theorem 5.2.2, the rankdfis at mostd.
Denote OPT, X; the optimal value and an optimal solution taiR-PCA with target dimen-

siond. Note that™=* X is a feasible solution toAfR-PCA relaxation on target dimensian- s
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which is at Ieasl‘%OPTd because the objective scales linearly wkh Therefore, the optimal
FAIR-PCA relaxation of target dimensieh- s attains optimum at Ieagg—SOPTd, giving (1 — )~

approximatiorratio. O

5.4 Iterative Rounding Framework with Applications to FAIR-PCA

In this section, we first prove Theorem 5.1.8.

We give an iterative rounding algorithm. The algorithm maintains three subspaces that are
mutually orthogonal. Lety, Fy, F denote matrices whose columns form an orthonormal basis
of these subspaces. We will also abuse notation and denote these matrices by sets of vectors in
their columns. We let the rank df,, F; and F' bery, r; andr, respectively. We will ensure that
ro + 11 +1r = n,i.e., vectors inky, F; andF spanR”.

We initialize F, = F, = 0 andF = I,,. Over iterations, we increase the subspaces spanned
by columns ofF;, and F; and decreasé’ while maintaining pairwise orthogonality. The vectors
in columns of F; will be eigenvectors of our final solution with eigenvalue In each iteration,
we project the constraint matrices orthogonal toF; and F,. We will then formulate a residual
SDP using columns af’ as a basis and thus the new constructed matrices will have size To
readers familiar with the iterative rounding framework in linear programming, this generalizes the
method of fixing certain variables tbor 1 and then formulating the residual problem. We also
maintain a subset of constraints indexeddbwheres is initialized to{1, ..., m}.

The algorithm is specified in Figure 5.1. In each iteration, we formulate the foll oSy )

with variablesX (r) which will be ar x r» symmetric matrix. Recatt is the number of columns in
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max (FTCF, X(r))
(FTAF, X(r)) > b — FIAF, ieS
tr(X) < d—rank(F})

0= X(r) =21,

1. Initialize Fy, F; to be empty matrices and = [,,, S — {1,...,m}.
2. If theSDP is infeasible, declare infeasibility. Else,

3. While F' is not the empty matrix.

4. ReturnX = F\FT.

(a) SolveSDP(r) to obtain extreme poink*(r) = >, Ajvjv] where); are the
eigenvalues and; € R" are the corresponding eigenvectors.

(b) For any eigenvectar of X*(r) with eigenvalué, let Fy < Fy U {Fv}.

(c) For any eigenvectar of X*(r) with eigenvaluel, let F; «— F} U {Fv}.

(d) Let X; = Zj:o<xj<1 Ajujul. If there exists a constraint € S such that
(FTAF, X)) < A(A), thenS — S\ {i}.

(e) For every eigenvectorof X*(r) with eigenvalue not equal toor 1, consider the
vectorsF'v and form a matrix with these columns and use it as the Rew

Figure 5.1: Iterative Rounding AlgorithnTERATIVE-SDP.

It is easy to see that the semi-definite program remains feasible over all iteratRin® is

declared feasible in the first iteration. Indeed the solufigrdefined at the end of any iteration is

a feasible solution to the next iteration. We also need the following standard claim.

Claim 22. LetY be a positive semi-definite matrix such that< 7 with tr(Y') <. Let B be real
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matrix of the same size &5and let)\;(B) denote the&'" largest singular value of3. Then

l
=1
The following result follows from Corollary 5.2.1 and Claim 22. Recall that

1\/2I5]+1]
A(A) ;= max Z ai(S).

scim) 4=

whereo;(.S) is thei'th largest singular value (%' Y ies Ai-
We letA denoteA(.A) for the rest of the section.

Lemma 5.4.1. Consider any extreme point solutioXi(r) of SDP(r) such thatrank( X (r)) >
tr(X(r)). LetX(r) = 357_; Aju;u; be its eigenvalue decomposition aig = 35, _; Ajv;v; -

Then there exists a constrainsuch thatl F* A, F, X ;) < A.

Proof. Let! = |S|. From Corollary 5.2.1, it follows that number of fractional eigenvalueX ¢f)
is at most—1 + /20 + 9 < v/2] + 1. Observe that > 0 since rankX(r)) > tr(X(r)). Thus
rank( X ;) < v/21 + 1. Moreover,0 < X; < I, thus from Claim 22, we obtain that

[v2i+1] [V2i+1]

jes i=1 jes i=1 jes

where the first inequality follows from Claim 22 and second inequality follows since the sum of
top [ singular values reduces after projection. But then we obtain, by averaging, that there exists
j € S such that

(FTA;F, X;) < % A=A

asclaimed. O
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Now we complete the proof of Theorem 5.1.8. Observe that the algorithm always maintains that
end of each iteration, trace &f; plus the rank of; is at most. Thus at the end of the algorithm,
the returned solution has rank at mdstNext, consider the solutioX = Fy F' + FX;F* over
the course of the algorithm. Again, it is easy to see that the objective value is non-increasing over
the iterations. This follows sinc&; defined at the end of an iteration is a feasible solution to the
next iteration.

Now we argue the violation in any constrainfWhile the constraint remains in the SDP, the

solutionX = FyF + FXF7 satisfies

(Ai, X) = (A, L F]) + (4, FX,FT)

=(Ai, L FT) + (FTAF, Xp) < (A, L FT) + b — (A, FLFT) = by

where the inequality again follows singé; is feasible with the updated constraints.

When constraintis removed it might be violated by a later solution. At this iteratidr’. A, F, X ) <
A. Thus,(A;, FLFL) > b; — A. In the final solution this bound can only go up Asmight only
become larger. This completes the proof of theorem.

We now analyze the runtime of the algorithm which contains at mdstations. Each iteration
requires solving an SDP and eigenvector decompositionsravermatrices, and recomputing.
The SDP has runtimé(r%?) which exceeds eigenvector decomposition and compuXingr’
takesO(n?). However, the result in Section 5.2 shows that v/2k, and hence the total runtime

of iterative rounding i€ (k*% + kn?).

Application to FAIR-PCA . For the FAIR-PCA problem, iterative rounding recovers a rahk-
solution whose variance goes down from the SDP solution by at (hoSHT Ay, ..., AT Ai}).
While this is no better than what we get by scaling (Corollary 5.3.1) for the max variance objective

function, when we consider the marginal loss, i.e., the difference between the variance of the
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commond-dimensional solution and the bestlimensional solution for each group, then iterative
rounding can be much better. The scaling solution guarantee relies on the max-variance being a
concave function and for the marginal loss, the loss for each group could go up proportional to the
largestmax variance (largest sum of tégsingular values over the groups). With iterative rounding
applied to the SDP solution, the lodsis the sum of onlyO(v/k) singular values of the average of

some subset of data matrices, so it can be better by as much as a fagiar of

5.5 Polynomial Time Algorithm for Fixed Number of Groups

Functions of quadratic maps. We briefly summarize the approach of [GPO5]. lfet.. ., f. :
R" — R be real-valued quadratic functionsinvariables. Letp : R* — R be a polynomial of
degreef over some subring dR* (e.g., the usualx, +) or (+, min)) The problem is to find all

roots of the polynomiab(fi(z), fa(z), ..., fe(z)), i.e., the set

Z={a : p(fi(a), fo(@). ... fulx)) = O}.

First note that the set of solutions above is in general not finite and is some manifold and highly
non-convex. The key idea of Grigoriev and Paleshnik (see also Barvinok [Bar93] for a similar idea
applied to a special case) is to show that this set of solutions can be partitioned into a relatively
small number of connected components such that there is an into map from these components
to roots of a univariate polynomial of degré@:)°®; this therefore bounds the total number of
components. The proof of this mapping is based on an explicit decomposition of space with the
property that if a piece of the decomposition has a solution, it must be the solution of a linear
system. The number of possible such linear systems is boundét“asand these systems can be
enumerated efficiently.

The core idea of the decomposition starts with the following simple observation that relies

crucially on the maps being quadratic (and not of higher degree).
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Proposition 5.5.1. The partial derivatives of any degrégolynomialp of quadratic formsf;(z),

wheref; : R" — R, is linear inx for any fixed value of f1(x), ..., fr(z)}.

To see this, supposg = f;(z) and write

k k

@ B op(Y1,...,Yy) 0Y; op(Y1,...,Yy) 0f;(x)

j=1

Now the derivatives of; are linear inz; asf; is quadratic, and so for any fixed values6f. . ., Yy,
the expression is linear in
The next step is a nontrivial fact about connected components of analytic manifolds that holds
in much greater generality. Instead of all points that correspond to zerpsveé look at all
“critical” points of p defined as the set of poinisfor which the partial derivatives in all but the
first coordinate, i.e.,
Op

Ze={w: 5 -=0, V2<i<n}

The theorem says that. will intersect every connected componentb{GVJ88].

Now the above two ideas can be combined as follows. We will cover all connected components
of Z.. To do this we consider, for each fixed valuergf. . ., Y;, the possible solutions to the linear
system obtained, alongside minimizing. The rank of this system is in general at least &
after a small perturbation (while [GP05] uses a deterministic perturbation that takes some care, we
could also use a small random perturbation). So the number of possible solutions grows only as
exponential inD(k) (and notr), and can be effectively enumerated in tigig)°*), This last step
is highly nontrivial, and needs the argument that over the reals, zeros from distinct components
need only to be computed up to finite polynomial precision (as rationals) to keep them distinct.
Thus, the perturbed version still covers all components of the original version. In this enumeration,
we check for true solutions. The method actually works for any level sgt 6f : p(z) = ¢}

and not just its zeros. With this, we can optimize opeas well. We conclude this section by

188



paraphrasing the main theorem from [GP05].

Theorem 5.5.2.[GP05] Givenk quadratic maps, . . ., ¢; : R¥ — R and a polynomiap : R¥ —

R over some computable subringl®bf degree at mogt, there is an algorithm to compute a set of
points satisfying(q:(x), ..., g:(x)) = 0 that meets each connected component of the set of zeros
of p using at most/n)°*) operations with all intermediate representations bounded/ay°*

times the bit sizes of the coefficientg0ods, . . ., g,. The minimizer, maximizer or infimum of any
polynomialr(q;(x), ..., qx(x)) of degree at mogtover the zeros gf can also be computed in the

same complexity.

5.5.1 Proofof Theorem 5.1.6

We apply Theorem 5.5.2 and the corresponding algorithm as follows. Our variables will be the
entries of am x d matrix P. The quadratic maps will bé (P) plus additional maps fay;; (P) =

| 2;||> — 1 andg;;(P) = PT P; for columnsP;, P; of P. The final polynomial is

p(fb s 7fk7Ql17 s 7Qdd) = ZqZ](P)Q
i<j
We will find the maximum of the polynomial( f, ... fx) = g(f1,- .., fx) over the set of zeros of
p using the algorithm of Theorem 5.5.2. Since the total number of variabiesasd the number
of quadratic maps i + d(d + 1)/2, we get the claimed complexity 6¥(¢dn)°*+%) operations

and this times the input bit sizes as the bit complexity of the algorithm.
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5.6 Hardness

Theorem 5.6.1. TheFAIR-PCA problem:

max 2z subject to (5.14)
2ER,PcRnxd
(B;,PP") >z Vi€ [k] (5.15)
PP =1, (5.16)

for arbitrary n x n symmetric real PSD matrices,, . . ., By is NP-hard ford = 1 andk = O(n).

Proof of Theorem 5.6.1 We reduce another NP-hard problem of MAX-CUT to the stated fair

PCA problem. In MAX-CUT, given a simple gragh = (V, F), we optimize

Igg}/{e(S,V\S) (5.17)

over all subsef of vertices. Hereg(S, V' \ §) = |{e;; € E:i e S,j € V\ S}|is the size of the

cutSin G. As common NP-hard problems, the decision version of MAX-CUT:
PSS CVie(S,V\S)>0b (5.18)
for an arbitraryb > 0 is also NP-hard. We may write MAX-CUT as an integer program as follows:

37w e {-1,1}" % > (1 —wvwy) b (5.19)

ijEE

Herev; represents whether a verteis in the setS or not:

1 1€ 8

1 ¢S
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and it can be easily verified that the objective represents the desired cut function.

We now show that this MAX-CUT integer feasibility problem can be formulated as an instance
of the fair PCA problem (5.14)-(5.16). In fact, it will be formulated as a feasibility version of the
fair PCA by checking if the optimat of an instance is at least We choosel = 1 andn = |V/|
for this instance, and we writ€ = [uy;...;u,] € R". The rest of the proof is to show that
it is possible to construct constraints in the fair PCA form (5.15)-(5.16) to 1) enforce a discrete
condition onu; to take only two values, behaving similarly s and 2) check an objective value
of MAX-CUT.

The reason; as written cannot behave exactly.ass that constraint (5.16) requir@s’”_, u;> =
1 but>>" v, = n. Hence, we scale the variables in MAX-CUT problem by writing= \/nu;

and rearrange terms in (5.19) to obtain an equivalent formulation of MAX-CUT:

1 1"
37 ——, — 7 —wu; > 2b— |E 21
ue{ \/ﬁ’\/ﬁ} nz wju; > 2b — |E| (5.21)

ijEE

We are now ready to give an explicit (:onstruction{(ﬁ‘i}f”:1 to solve MAX-CUT formulation

(5.21). Letk =2n + 1. Foreachy = 1,...,n, define

bn
n—1

BQj—l =bn - diag(ej), ng = . dlag(l — ej)

wheree; and 1 denote vectors of length with all zeroes except one at thiéh coordinate, and
with all ones, respectively. It is clear th&, ,, By; are PSD. Then for each= 1...,n, the

constraintg By;_1, PPT) > band(B,;, PPT) > b are equivalent to

n—1

1
2 2
ujzﬁ,andE uj >

Y n
i#]

respectively. Combining these two inequalities wWitlj" , u7 = 1 forces both inequalities to be
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equalities, implying that; € {—\/Lﬁ, \/Lﬁ} for all j € [n], as we aim.

Next, we set
bn

2[5 + 2 (M Ae)

B2n+1 =

whereAq = (Iij € E)); jepn is the adjacency matrix of the gragh Since the matrix/,, — Aq
is diagonally dominant and real symmetri;,,.; is PSD. We have thatBs,.1, PPT) > b is

equivalent to
b niuz_zu.u. .
- |E[+n* &= A B

which, by>"" | u? = 1, is further equivalent to

=1 "
n Z —u;u; > 20 — |E|
ijeE

To summarize, we constructds, ..., By,,1 SO that checking whether an objective of fair
PCA is at leasb is equivalent to checking whether a gra@has a cut of size at leastwhich is

NP-hard. O

5.7 Integrality Gap

We showed that &iR-PCA for k = 2 groups can be solved up to optimality in polynomial time
using an SDP. Fok > 2, we used a different, non-convex approach to get a polytime algorithm
for any fixedk, d. Here we show that the SDP relaxation @fiR-PCA has a gap even far= 3
andd = 1.
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Lemma5.7.1. TheFAIR-PCA SDP relaxation:

max 2

(Bi,X)>z ie{l,... .k}

for k = 3, d = 1, and arbitrary PSD{B’Z-}Z.“:1 contains a gap, i.e. the optimum value of the SDP

relaxation is different from one of exaenIrR-P CA problem.

21 11 2 -1
Proof of Lemma 5.7.1 Let B, = , By = ,Bs = . It can be
11 1 2 -1 2
checked that3; are PSD. The optimum of the relaxation7g4 (given by the optimal solution
1/2 1/8 . . 16/17 4/17
X = ). However, an optimal exactAR-PCA solution isX =
1/8 1/2 417 1/17

which gives an optimur26/17 (one way to solve for optimum rank-1 solutidhis by parameter-

izing X = v(#)v(0)7 for v(#) = [cos B;sin b, 6 € [0,2n)). O

5.8 Experiments

First, we note that experiments foalR-PCA with marginal loss objective for two groups were
done in Samadi et al. [Sam+18]. Their algorithm outputs optimal solutions with exact rank, de-
spite their weaker guarantee that the rank may be violated by at most 1. Hence, our result of
Theorem 5.1.1 is the missing mathematical explanation of their empirical finding. We extend their
experiments by solving MLTI-CRITERIA-DIMENSION-REDUCTION for more number of groups

and objectives as follows.

We perform experiments using the algorithm as outlined in Section 5.2 on the Default Credit
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data set [YLO9] for different target dimensiords The data is partitioned inth = 4,6 groups

by education and gender, and preprocessed to have mean zero and same variance over features.
Our algorithms are specified by two objectives fouM|-CRITERIA-DIMENSION-REDUCTION

problem introduced earlier: the marginal loss function and Nash social welfare. The code is pub-
licly available athttps://github.com/SDPforAll/multiCriteriaDimReduction. Figure 5.2

shows the marginal loss by our algorithms compared to a standard PCA on the entire dataset. Our
algorithms significantly reduce "unfairness” in marginal loss of PCA that the standard PCA subtly

introduces.

normalPCA normal PCA
14 —#— SDPRoundNsSwW 35 —#— SDPRoundNSW
SDPRoundMar-Loss SDPRoundMar-Loss

Mar-Loss Objective
(=]
oo
Mar-Loss Objective
o

15
0.4 1
A
02 : 05 g 1
[ 4] Ty
DA A RA AR A= A5 -2

1234567 8 910111213141516171819202122 1234567 8 910111213141516171819202122

Target dimension Target dimension

Figure 5.2: Marginal loss function of standard PCA compared to our SDP-based algorithms on
Default Credit data. SDPRoundNSW and SDPRoundMar-Loss are two runs of the SDP-based
algorithms maximizing NSW and minimizing marginal loss. Léft= 4 groups. Right%x = 6.

In the experiments, extreme point solutions from SDPs enjoy lower rank violation than our
worst-case guarantee. Indeed, while the guarantee is that the numbers of additional rank are at
mosts = 1,2 for k = 4,6, almost all SDP solutions hawxactrank, and in rare cases when the
solutions are not exact, the rank violation is only one. While our rank violation guarantee provably
cannot be improved in general (due to the integrality gap in Section 5.7), this opens a question
whether the guarantee is better for instances that arise in practice.

We also assess the performance of PCA with NSW objective, summarized in Figure 5.3. With
respect to NSW, standard PCA performs marginally worse (about 10%) compared to our algo-

rithms. It is worth noting from Figures 5.2 and 5.3 that our algorithms which try to optimize either
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Figure 5.3: NSW objective of standard PCA compared to our SDP-based algorithms on Default
Credit data. SDPRoundNSW and SDPRoundMar-Loss are two runs of the SDP algorithms max-
imizing NSW objective and minimizing maximum marginal loss. Left:= 4 groups. Right:

k = 6.

marginal loss function or NSW also perform well on the other fairness objective, making these
PCAs promising candidates for fairness application.

Same experiments were done on the Adult Income data [UC ]. Some categorial features are
preprocessed into integers vectors and some features and rows with missing values are discarded.
The final preprocessed data contains= 32560 datapoints inn = 59 dimensions and is par-
titioned intok = 5 groups based on race. Figure 5.4 shows the performance of our SDP-based
algorithms compared to standard PCA on marginal loss and NSW objectives. Similar to the Credit
Data, optimizing for either marginal loss or NSW gives a PCA solution that also performs well in

another criterion and performs better than the standard PCA in both objectives. Almost all SDP

solutions are exact without any rank violation.

5.9 Scalability of the Algorithms

We found that the running time of solving SDP, which depends,os the bottleneck in all exper-
iments. Each run (for one value @f of the experiments is fast(0.5 seconds) on Default Credit
data ( = 23), whereas a run on Adult Income data< 59) takes between 10 and 15 seconds on

a single CPU. However, the runtime is not noticeably impacted by the numbers of data points and
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Figure 5.4: Marginal loss and NSW objective of standard PCA compared to our SDP-based algo-
rithms on Adult Income data. SDPRoundNSW and SDPRoundMar-Loss are two runs of the SDP
algorithms maximizing NSW objective and minimizing maximum marginal loss.

groups: largern only increases the data preprocessing time to obtainn matrices and larger

k increases the number of constraints. SDP solver and rounding algorithms can handle moder-
ate number of affine constraints efficiently. This observation is as expected from the theoretical
analysis.

In this section, we show two heuristics for solving the SDP relaxation that runs significantly
faster in practice for large datasets: multiplicative weight update (MW) and Frank-Wolfe (FW).
We also discuss several findings and considerations for implementing our algorithms in this thesis
in practice. Both heuristics are publicly available at the following sitetps://github.com/
SDPforAll/multiCriteriaDimReduction.

For the rest of this section, we assume that the utility of each group is simply variaake,=
(B;, X) whereB; = AT A;, and thatg(z1, . .., z; is a concave function of;, ..., z;. Whenu; is
other linear function, we can model such different utility function by modifyjmgthout changing

the concavitiy ofg. The SDP relaxation of MLTI-CRITERIA-DIMENSION-REDUCTION can be
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framed as SDP (5.22)-(5.25).

XIEnRz%ng(zl, Z9,...,21) Subject to (5.22)
= (B;, X) Vi=1,2,...,k (5.23)

tr(X) <d (5.24)

0=xX=1I, (5.25)

5.9.1 Multiplicative Weight Update

One alternative method to solving (5.22)-(5.25) is multiplicative weight (MW) update [AHK12],
suggested by [Sam+18] for solving\iR-PCA problem for two groups in order to improve run-
time. Though this prior works [AHK12, Sam+18] have theoretical guarantee, in practice the learn-
ing rate is tuned mre aggressively and the algorithm becomes a heuristic without any certificate
of optimality. We show the primal-dual derivation of Multiplicative Weight, which provides the
primal-dual gap to certify optimality.

We take the Lagragian dual on (5.23) to obtain that the optimum of the SDP equals to

max inf g(z —1—5 w; ((By, X) — 2)
XeRMX" weRk

ZER™

tr(X)=d

0=X=I

By strong duality, we may swajpax andinf. After rearranging, the optimum of the SDP equals

weRk XeRnxn 2€R™
Y=d, 0= X =T =1

inf ( max sz B;, X) — min (w z g(z))) (5.26)
tr(X
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The optimization

k
Jnax Z w; (B;, X) (5.27)
tr(X)=d,0=X <71 =1

in (5.26) can easily be computed by standard PCA on weighte@éztgwi - B; projecting from
n to d dimensions. The term (5.27) is also convexuinas it is a maximum of linear functions.
The termmin.er» (w”z — g(z)) is also known as concave conjugategofvhich we will denote
by g.(w). Itis also known thaf, (w) is a concave function (as it is a minimum of linear functions).
Hence, (5.26) is a convex optimization problem.

Solving the dual problem (5.26) depends of the forny.giv). For each fairness criteria out-

lined in this paper, we summarize the formgfw) below.

Max-Min Variance (FAIR-PCA or MM-Var) : fairness objectivg(z) = min;cp z; gives

0  fw>0,2F w=1
ge(w) =
—oo otherwise

Min-Max Loss (MM-Loss) : fairness objective (recall (5.1)) ) = min;e z; — 5;, whereg; =

maxgep, || A:Q|% is the best possible variance the graugan have, gives

S wiB ifw>0,30 wi=1
g«(w) =
—00 otherwise

More generally, the above form @f (w) holds for any constants;’s. For example, this
calculation also captures Min-Max reconstruction ergdiX ) = min;ep —||A; — A;P||% =

min;ep) 2 — tr(B;) (recall thatX = PP, B; = AT A;, andz; = (B;, X)).
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Nash Social Welfare (NSW): fairness objectivg(z) = Zle log(z;) gives

Zle(l +logw;) ifw>0
gi(w) =
—00 otherwise

For fairness criteria in the "max-min" type, including MM-Var and MM-Loss, the dual reduces
to solving an optimization over a simplex with standard PCA as the function evaluation oracle.
Solving an optimization over a simplex can be done using mirror descent [NY83] with entropy
potential functionR(w) = Zle w; log w;. Such optimization is algorithmically identical to mul-
tiplicative weight update by [AHK12]; however, with primal-dual formulation, the dual solution
w; obtained in each step of mirror descent can be used to calculate the dual objective in (5.26), and
the optimumX in (5.27) is used to calculate the primal objective. The algorithm runs iteratively

until the duality gap satisfies a set threshold of choice.

5.9.2 Frank-Wolfe

It is worth noting that while the original optimization (5.22)-(5.25), which is in the form

max  g(z(X))
XeRan
tr(X)=d,0= X <1

where the utilityz is a function of projection matriXX' is a nontrivial convex optimization, its

linear counterpart

max (C, X)
tr(X)=d,0< X <1

is solvable by standard PCA for any given matéix This motivates Frank-Wolfe (FW) algo-

rithm [FW56] which requires a linear oracle (solving the problem with a linear objective) in each
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step. The instantiation of FW to WL.TI-CRITERIA-DIMENSION-REDUCTION is summarized in

Algorithm 5.1. We note the simpler linear oracle step in FW.

Algorithm 5.1 Frank-Wolfe Algorithm for Multi-Criteria Dimensionality Reduction

1: Input: By,..., B, € R"™*", d < n, concavey : R¥ — R, learning rate),, duality gap target
2: Output: A matrix X € R™*" that maximizesy((Bi, X), ..., (B, X)) subject totr(X) =
d,0=X =<1

3: Initialize a feasibleX, (we useX, = 21,),t =0

4: while duality gap exceeds the targii

5: G, — Vxg(Xy)

6: S, « VVT whereV is n-by-d matrix of topd eigenvectors of/; > Linear oracle of FW
7 Xip1 — (1 =)z +neSe

8: g — (S; — Xy) - Gy > Duality gap
9: t—t+1

10: OutputX,

One additional concern for implementing FW is obtaining grad¥éry(X;). For some ob-
jectives such as NSW, this gradient can be calculated directly (some small error may need to be
added to stabalize the algorithm from exploding gradient when the variance is close to zero). Other
objectives, such as MM-Var and MM-Loss, on the other hand, is not differentiable. Though one
may try to still use FW, there is no theoretical guarantee in the literature for the convergence of
maximizing concave non-differentiable function, even when the feasible set is compact as in our

SDP relaxation.

5.9.3 Parameter Tuning

Multiplicative Weight Update. In practice for MM-Var and MM-Loss objectives, we tune the
learning rate of mirror descent much higher than in theory. For NSW, the dual is still a convex
optimization, so standard technique such as gradient descent can be used. We found that in practice,
however, the unboundedness of the feasible set and the exploding gradienbyghare close to

zero pose a challenge to tune the algorithm to converge quickly.
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MW for Two Groups. For for MM-Var and MM-Loss objectives in two groups, the simplex is

a segmen|o, 1]. The dual problem (5.26) reduces to

inf max  (wB; + (1 —w)Bs, X) (5.28)
we[0,1] XcRnXn
tr(X)=d,0<X <1

The function

h(w) = max (wBy + (1 — w)By, X)
XGR"X"
tr(X)=d,0= X =TI

is @ maximum of piecewise linear functio(sB; + (1 — w) By, X) in w, and hence is convex on
w. Instead of mirror descent, one can apply ternary search, a technique applicable to maximizing
convex function in one dimension in general, to solve (5.28). However, we claim that binary search
is also a valid choice.

First, becausé(w) is convex, we may assume thiaachieves minimum at = w* and that all
subgradient®h(w) C (—oo, 0] for all w < w* andoh(w) C [0, co0) for all w > w*. In the binary

search algorithm with current iterate= w;, let

Xy € argmax (wBj + (1 —w;)Bs, X)
tr(X)=d,0<X =<1

be any solution of the optimization (which can be implemented easily by the standard PCA). Be-
cause alinear functiowB; + (1 — w)Bay, X;) = (Bs, X;) +w (B; — Bs, X;) is alower bound of

h(w) andh is convex, we haveB; — Bs, X;) € 0h(w,). Therefore, the binary search algorithm
can check the sign dfB; — Bs, X;) for a correct recursion. fB; — By, X;) < 0, thenw* > wy;

if (B; — By, X;) > 0, thenw* < w,; and the algorithm recurses in the left half or right half of the

current segment accordingly. (B, — B, X;) = 0, thenw, is an optimum dual solution.

Frank-Wolfe. In practice, we experiment with more aggressive learning rate schedule and line

search algorithm. We found that FW converges quickly for NSW objective. However, FW does not
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converge for MM-Var and MM-Loss for any learning rate schedule, including the standatd

1

75> and line search. There is modification of FW which has convergence guarantee for maximizing

concave non-differentiable functions. It is still an open question on this thesis whether some of
those, if any, can speed up the SDP relaxation aftM-CRITERIA-DIMENSION-REDUCTION

problem.

5.9.4 PracticalConsiderationand Findings

Extreme Property of SDP Relaxation Solution. We note that a solution for SDP relaxation
(5.22)-(5.25) obtained by any of the algorithm (MW, FW, or SDP solver) are already extreme in
practice. This is because with probability 1 over random datasets, SDP is not degenerate, and
hence have a unique optimal solution. Since any linear optimization over a compact, convex set
must have an extreme optimal solution, this optimal solution is necessarily extreme. Therefore, in

practice, it is not necessary to apply the SDP rounding algorithm to the solution of SDP relaxation.

Rank Violation of Extreme SDP Relaxation Solution. While the rank violation bound of

|1/ 2k + %1 — %J stated in Theorem 5.1.3 is tight (tight examples in [Pat98] can be applied in our
settings), the rank violation in our experiments up to 16 groups are mostly zero, i.e. we obtain an
exact solution. In rare cases where the solution is not exact, the rank violation is one. As a result,
in all experiments we begin by solving the SDP relaxation targeting dimewsitirthe solution

is exact, then we are done. Else, we target dimengienl and check if the solution is of rank at
mostd. If not, we continue to target dimensidn-2,d — 3, . . . until the solution of SDP relaxation

has rank at most.

5.9.5 Runtime Results

We next perform MW and FW heuristics on a larger 1940 Colorado Census dataset [AA]. The

census data is preprocessed by one-hot encoding all discrete columns, ignoring columns with N/A,
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Table 5.1: Runtime of MW and FW for solving M.T1-CRITERIA-DIMENSION-REDUCTION ON
different fairness objectives and numbers of dimensions in original data. Times reported are in
second(s).

Original Dimensions| MM-Var (byMW) | MM-Loss (by MW) | NSW (by FW)
n = 1000 77 65 15
n = 2000 585 589 69

and normalizing the data to mean zero and variance one. The preprocessed dataset contain 661k
datapoints and 7284 columns. Data are partitioned into 16 groups based on 2 genders and 8 edu-
cation levels. We solve the SDP relaxation obM1-CRITERIA-DIMENSION-REDUCTION with

MM-Var, MM-Loss, and NSW objectives until obtain a certificate of duality gap of no more than
0.1% (in the case of NSW, the product of variances, rather than the sum of logarithmic of variances,
are used to calculate this gap). The runtime results, in seconds, are in shown in Table 5.1. When
n increases, the bottleneck of the experiment became the standard PCA itself. Since speeding up
the standard PCA is out of the scope of this work, we capped the original dimension of data by
selecting the first dimensions out of 7284, so that the standard PCA can still be performed in a

reasonable amount of time.

Empirical Performance of MW. We found that MM-Var and MM-Loss objectives are solved

by efficiently by MW, whereas MW with gradient descent on the dual of NSW does not converge
quickly. For the Census Dataset, after parameter tuning, MW runs 100-200 iterations on both ob-
jectives. MW for both Credit and Income dataseis< 23, 59) on 4-6 groups with both objectives

runs 10-20 iterations, giving a total runtime of is less than few seconds. Therefore, the price of
fairness in PCA for MW-Var and MM-Loss objectives is 100-200x runtime for large datasets, and

10-20x runtime for medium datasets, as compared to the standard PCA without fairness constraint.

Empirical Performance of FW. FW converges quickly for NSW objective, and does not con-
verge on MM-Var or MM-Loss objectives. FW terminates in 10-20 iterations for Census Data,

where the standard PCA oracle is the bottleneck in each iteration. Therefore, the price of fair-

203



ness in PCA for NSW objective is 10-20x runtime compared to the standard PCA without fairness
constraint.

It is still an open question in this work to explore other heuristics to speed up solvingiM
CRITERIA-DIMENSION-REDUCTION in practice. It is still open if some (if any) modification of
FW may work well for non-differentiable objectives, or if a modification of MW will improve the

runtime further for any of the three objectives.
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CHAPTER 6
CONCLUSION

This thesis presents novel applications and extensions of convex relaxations for different contexts,
namely in diverse subset selection and multi-criteria dimensionality reduction which is motivated
from fairness in Principle Component Analysis (PCA). Convex relaxations we use include SDPs,
convex programs over polytopes, and convex programs with linear and nonlinear objective over
PSD feasible sets. Convex relaxations are intermediate steps of the problem that can efficiently give
fractional solutions. We present novel rounding scheme to obtain the original feasible solutions
from fractional ones, which includes novel sampling distribution, and show their efficiency. In
an application of SDPs, we show that extreme solutions of relaxatimmselveslready have
desired properties and no rounding is needed.

Moreover, analyzing convex relaxations and their dual problems gives lower bound on approx-
ibility of the problems. Integrality gaps of convex relaxations shows that better approximation
ratio from any rounding scheme does not exist, such as our tightness resutofatrmal design.

Dual problems of the relaxations can be used to approximate the value of optimum, allowing us
to prove the approximation guarantee, even without solving the dual problems. This technique,
calleddual-fitting, gives the best approximation results known fdoptimal design by a simple,
widely-used combinatorial algorithm.

Finally, solving the problems as convex programs allows us to consider wider range of tools
from convex optimization. We are able to scale algorithms for multi-criteria dimensionality reduc-
tion in practice using convex optimization methods, giving our work both theoretical performance

and empirical success.
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