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SUMMARY

The work consists of two major topics: subset selection and multi-criteria dimensionality re-

duction with an application to fairness. Subset selection can be applied to a classical problem

Optimal Designin statistics and many others in machine learning including diverse sampling.

Our first contribution is to show that approximability of many criteria for subset selection

can be obtained by novel polynomial-time sampling algorithms, improving upon best previous

approximation ratios in the literature. The results apply to several generalizations of the problem,

many of which are novel. We also show that theA-optimal criterion isNP-hard and that the

best-known approximation forE-optimal criterion is tight up to the natural convex relaxation.

One of the most common heuristics used in practice to solveA andD-optimal criteria is the

local search heuristic, also known as the Fedorov’s exchange method [Fed72]. This is due to

its simplicity and its empirical performance [CN80, MN94, ADT07]. However, despite its wide

usage, no theoretical bound has been proven for this algorithm. We bridge this gap and prove

approximation guarantees for the local search algorithms forA- andD-optimal criteria.

This thesis also extends the arguably most commonly used dimensionality reduction technique,

Principal Component Analysis (PCA), to satisfy a fairness criterion of choice. We model an ad-

ditional fairness constraint asmulti-criteria dimensionality reductionwhere we are given multiple

objectives that need to be optimized simultaneously. Our model of multi-criteria dimensionality

reduction captures several fairness criteria for dimensionality reduction motivated from economic

literature. Our technical contribution is to prove new low-rank properties of extreme point solutions

to semi-definite programs, which gives theoretical performance to our algorithms for multi-criteria

dimensionality reduction. Finally, we perform experiments on real-world datasets indicating the

effectiveness of the algorithms and demonstrating empirical scalability of our proposed implemen-

tations in practice.

xii



CHAPTER 1

INTRODUCTION

This thesis composes of two topics: subset selection and multi-criteria dimensionality reduction.

Each topic outlines the introduction which includes the problem formulation and motivation, pre-

vious and related work, summary of contribution, and future directions.

1.1 Diverse Subset Selection

1.1.1 Introduction

Choosing a diverse representative subset of items from a given large set arises in many settings such

as feature selection [BMI13], sensor placement [JB09], matrix sparsification [BSS12a, SS11], and

column subset selection in numerical linear algebra [AB13]. In statistics, this subset selection prob-

lem captures a classical problemOptimal Designin statistics, also known as design of experiments

[Fed72, Puk06]. Its real-world applications include efficient design of science experiments and

CPU processors [WYS17], and material design [WUSK18]. In order to motivate the mathematical

formulation of this problem, we first outline the motivation from the optimal design problem. We

later present several applications of the mathematical formulation in the related work section.

Motivation and Problem Formulation from Optimal Design. In many settings of supervised

learning, obtaining labels is costly, but analysts have an ability choose from the pool of datapoints

from which labels are obtained, also known as an active learning setting. The problem ofoptimal

designis to choose the best smaller set of datapoints to obtain labels to maximize the accuracy

and confidence of the model that learns from those labelled datapoints. The standard form of

optimal design concerns linear regression model, which is arguably the most fundamental concept

1



in supervised machine learning.

Optimal design can be defined mathematically as follows. Letv1, v2, . . . , vn ∈ Rd be given

unlabelled datapoints. We assume a linear regression model: there exists an unknown regression

coefficient vectorx∗ ∈ Rd such that, for anyi ∈ [n], the labelyi received from the datapointvi

satisfies

yi = vi
>x∗ + η

whereηi is a random i.i.d. Gaussian noise. Our goal of optimal design is to approximatex∗ with

least amount of error. We are allowed to choose at mostk of the design pointsS ⊆ [n] to observe

yi = vi ∙ x∗ + ηi for eachi ∈ S.

Suppose we have picked a subsetS ⊆ [n] of sizek. Let VS be ad-by-k matrix whose columns

arevi’s, i ∈ S andyS be the column vector ofyi’s, i ∈ S. The best unbiased estimatorx̂ for x∗ is

the least square error estimator:

x̂ = argmin
x∈Rd

‖yS − V >
S x‖22

which has a closed-form solution

x̂ = (VSV >
S )−1

∑

i∈S

yivi

Supposeηi’s are i.i.d. Gaussian noise withηi ∼ N(0, δ), thenx̂−x∗ is distributed asd-dimensional

GaussianδN(0, (VSV >
S )−1). The matrixΣ = (VSV >

S )−1 characterizes the error of the estimate,

and thus the goal is to minimizesΣ. Multiple criteria are proposed to minimizeΣ. Some of the

common ones areA-, D-,andE-optimal designs, whose objectives are to minimizetr Σ, det(Σ), λmax(Σ) =

‖Σ‖spec, respectively. Therefore, optimal design can be stated as a discrete optimization problem:

min
S⊆[n],|S|=k

f
(
(VSV >

S )−1
)

(1.1)

2



for a given criterionf of interest.

Similarly to variants of the objectives, one may generalize to obtain variants of constraints

beyond the cardinality constraint|S| = k. For example, each datapointvi’s belong to an experi-

ment in one ofm laboratories, and each laboratory has its own size budgetki. This ispartitioning

constraint, wherevi’s are partitioned intom sets, each of which has its own cardinality constraint.

Though optimal design is motivated from statistics, the optimization (1.1) is general enough to

capture many problems in other areas including in graph and network design, welfare economy,

and diversity. We provide more details in the related work section.

Previous results. It is known that optimal design forD,E criteria is NP-hard [ÇMI09]. As a

result, the work focuses on efficient approximation algorithms, both randomized and determinis-

tic, for solving optimal design. Previous approaches to optimal design in statistics have no strong

theoretical guarantees (only guarantee with approximation ratio depending onn [AB13] exists).

Existing common approaches studied in theory and used practice include local search heuristics,

such as Federov exchange [Fed+55], and approximate design which solves the continuous relax-

ation of the problem and uses heuristics rounding. Recently, a new perspective to optimal design

problem through a more sophisticated randomized rounding algorithm gave a reasonable approxi-

mation ratio guarantee within a polynomial running time [WYS17, ALSW17a].

1.1.2 OtherApplicationsof SubsetSelectionandRelated Work

As mentioned earlier, subset selection not only applies to optimal design, but also many other

problems. This section lists some of those applications and related topics in some details.

Welfare economics of indivisible goods. There aret indivisible items to be distributed among

d individuals, and the utility of itemi to personj is pi,j . The utility uj of personj is the sum of

utilities of items personj receives. One criteria to distribute items is to maximize the project of

uj ’s, as known as Nash social welfare [KN79]. The other is to maximize the minimum ofuj ’s, also

3



known as Santa Claus problem [BS06]. Both Nash social welfare and Santa Claus problems are

special cases ofD- andE-optimal designs with partitioning constraints, where each item is one

partition containingd vectors in each of thed axes, and the budget for each partition is one.

Graph sparsification. Given a graphG = (V,E), graph sparsification is the problem of finding

a subsetS ⊆ E of size at mostk which retains the values of all graph cuts [BSS12a, SS11]. This

is closely related toE-optimal design where one wants to maximize the minimum eigenvalue of

the sum of rank-1 matricesviv
>
i , λmin

(∑
i∈S viv

>
i

)
. To relateE-optimal to graph sparsification,

one can define an instance ofE-optimal with input vectors aseij , {i, j} ∈ E. We note that there

are two stark differences of two problems: we requireunweightedselection of edges inE-optimal

design, and that graph sparsification requires two-sided bound of eigenvalues of
(∑

i∈S viv
>
i

)
.

Network design. Similar to graph sparsification, we are given a graphG = (V,E) which cor-

responds to an instance of an optimal design problem with input vectors aseij ’s. We want to

pick a subset of edgesF ⊆ E so that the subgraphH = (V, F ) is well-connected. To maximize

the connectivity, one measure iseffective resistance[GBS08, SS11], a notion of connectivity in

the middle between the two notions of edge connectivity and shortest path distance. The effective

resistance in an electric circuit corresponds to theA-optimal objective [GBS08]. There is also

another notion of connectivity, which is to maximize the number of spanning tree in the subgraph

H (see [LPYZ19] and references in the work for other applications). This notion corresponds to

maximizing the determinant of the covariance matrix of selected vector, i.e. theD-optimal design

problem.

Diversity sampling. Intuitively, the analyst in the optimal design setting seeks to find a small set

of datapoints that spreads over a wide region of space in order to maximize learning over the entire

space. Optimal design naturally gives rise to a notion of diversity sampling, where one seeks to

maximize the diversity of a smaller set from a given pool of items. Diversity sampling has many
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Table 1.1: Summary of approximation ratios of optimal design of previous work and our work.
Cells with an asterisk * indicates our results that improve the previous ones. No integrality gap
result exists before our work.

Problems
Previous work Our work Lower

bound
By relax-
ation

Combina-
torial

By relax-
ation

Combina-
torial

Integrality
gaps

(for general
k, d)

A-optimal,
k close tod

N/A n−d+1
k−d+1

k
[NST19]*

N/A k
k−d+1

[NST19]*
1 + c for
some small
c [NST19]*

A-optimal,
k >> d

1 + ε, for
k ≥ Ω

(
d
ε2

)
n−d+1
k−d+1

1 + ε,
for k ≥
Ω
(

d
ε
+

ln 1
ε

ε2

)

[NST19]*

1 + ε,
for k ≥
Ω
(

d ln2 1
ε

ε3

)

[MSTX19]*

1 + ε, for
k ≥ Ω

(
d
ε

)

[NST19]*

D-optimal,
k >> d

1 + ε,
for k ≥
Ω
(

d
ε
+

ln 1
ε

ε2

)

n−d+1
k−d+1

1 + ε,
for k ≥
Ω
(

d
ε
+

ln 1
ε

ε2

)

[NST19]

1 + ε, for
k ≥ Ω

(
d
ε

)

[MSTX19]*

N/A 3
2
√

2
[ÇMI09]

E-optimal,
k >> d

1 + ε, for
k ≥ Ω

(
d
ε2

) N/A N/A N/A 1 + ε, for
k ≥ Ω

(
d
ε2

)

[NST19]*

(
3
2

) 1
2(k−1)

[ÇMI09]

connections with machine learning, such as determinantal point processes (DPPs) [KT+12] and

fair representation of the data in machine learning [CDKV16].

1.1.3 Summaryof Contributions

The work in this direction consists of two papers: proportional volume sampling with Mohit Singh

and Aleksandar Nikolov [NST19] and combinatorial algorithms for optimal design with Mohit

Singh, Vivek Madan, and Weijun Xie [MSTX19]. Results from both papers are summarized in

Table 1. The first work [NST19] focuses onA-optimal design, yet we also show its applicability

to D-design and integrality gap ofE-design. The second [MSTX19] shows approximation factors

for A- andD-optimal design problems. The bound forD-design is better thanA-design, and is

the curerntly best known. The integrality gap in Table 1 refers to the worst-case ratio between

5



optimum of the relaxation and (1.1), where the relaxation refers to relaxing the space of solution

S ⊆ [n], |S| = k in (1.1) byπ ∈ Rn, 1 ≥ π ≥ 0,
∑n

i=1 πi = k and replacingVS with
∑n

i=1 πiviv
>
i .

Proportional volume sampling. To solve the optimal design problem, [NST19] first solves the

natural relaxation of optimal design, then use the solution of the relaxation to define a novel dis-

tribution calledproportional volume sampling. Sampling from this distribution provably obtained

the best approximation ratio forA-optimal design and best-known ratio forD-optimal design for

k >> d, and thek-approximation for anyk ≥ d. [NST19] does not improve approximation

guarantee onE-optimal, but shows a tight integrality gap result which implies that any round-

ing algorithm based on natural relaxation cannot improve upon the previous work. Additionally,

[NST19] also shows integrality gap and NP-hardness ofA-optimal design.

Combinatorial algorithms. In [MSTX19], we give the first approximation guarantees which is

independent ofn for optimal design with combinatorial algorithms, i.e. algorithms that do not rely

on solving the convex relaxation of optimal designs. The approximation ratio proven forD-optimal

also is the best proven in the literature. This work gives theorectical underpinning of known simple

heuristics [Fed+55] which are observed to work well in practice. The heuristics also avoid solving

the convex relaxation, which in practice is observed to be the bottleneck compared to the existing

rounding schemes [ALSW17a].

1.2 Fair Dimensionality Reduction

1.2.1 Introduction

Fairness in machine learning is a recent growing area in computer science. There are many in-

stances of machine learning algorithms’ outputs that are perceived as biased or unfair by users.

For example, Google Photos returns queries for CEOs with images overwhelmingly male and

white [KMM15]; record advertisements with higher frequency than searches white names [Swe13];
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facial recognition has wildly different accuracy for white men than dark-skinned women [BG18];

and recidivism prediction software labels low-risk African Americans as high-risk at higher rates

than low-risk white people [ALMK18].

There are many speculations on the source of bias. The past literature focuses on either bias

in training data or in the algorithms (see a survey, [CR18], for example). We (Jamie Morgenstern,

Samira Samadi, Mohit Singh, and Santosh Vempala, and I) discover another source of bias: in

the data processing [Sam+18]. Using one of the most common prepossessing algorithm PCA

(Principle Component Analysis, [Pea01, Jol86, Hot33, RSA99, IP91]), we show the gap of PCA’s

performance between majority and minority groups in real datasets. This gap persists even after

reweighting the groups to have equal weights.

[Sam+18] and [Tan+19] propose afair dimensionality reductionproblem, which seeks to re-

solve the bias found. The problem can stated as follows.

Definition 1.2.1. (Fair dimensionality reduction) Givenm data points inRn with subgroupsA and

B, thefair PCAproblem with social welfare objectivef is to find low-rank dataU by optimizing

min
U∈Rm×n, rank(U)≤d

f
( 1

|A|
‖A− UA‖

2
F ,

1

|B|
‖B − UB‖

2
F

)
(1.2)

whereUA andUB are matrices with rows corresponding to rows ofU for groupsA andB respec-

tively.

The choice off depends on the context. One natural choice is to letf be the max of two

reconstruction errors, which equalizes the error to both groups. Also, the problem can be naturally

generalized to more than two groups whenU is partitioned intok parts andf hask arguments.

1.2.2 Related Work

This line of work is new, and therefore has minimal related work comparable to our work. How-

ever, related work that are helpful in developing our algorithms are listed in Summary of Contri-
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bution.

1.2.3 Summaryof Contribution

Both [Sam+18] and [Tan+19] develop algorithms for approximately solvingfair dimensionality

reductionfor a wide class of functionsf . We summarize the algorithms and results as follows.

Convex relaxation and LP rounding.

[Sam+18] solves the convex relaxation of fair dimensionality reduction problem forf(uA, uB) =

max{auA + α, buB + β} for real constantsa, b, α, β. The technique relies on solving the convex

relaxation of the problem, defining a polytope whose objective are guarantee to perform as good as

the optimal, then rounding the fractional solution to the extreme point of that polytope. Using the

property of duals of an LP, the solution is guaranteed to perform as good as optimum, and violates

the rank constraint by at most one dimension.

Convex relaxation and SDP rounding.

[Tan+19] generalizes and improves the theorectical guarantee of [Sam+18] to solving anyf for

k groups that is concave and decreasing in each group’s reconstruction error. The technique also

replies on convex relaxation, and then defining a semi-definite cone instead of a polytope than

maintains the objective value. We build on the low-rank property of extreme solution of an SDP

by [Pat98] and show that the solution is guaranteed to perform as good as optimum, and violates

the rank constraint by at mostb
√

2k + 1
4
− 3

2
c dimension. In particular, in the case of two groups,

we can solve the problem exactly.

[Tan+19] also generalizes iterative LP rounding [LRS11] to iterative SDP rounding and applies

the result to fair dimensionality reduction. Additionally, [Tan+19] discusses some complexity

results including NP-hardness and integrality gap of the convex relaxation formulation for the

dimensionality reduction problem.
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1.2.4 Fast implementations

Running SDP becomes slow when the number of original dimensionsn increases beyond moderate

sizes (e.g.n ≈ 50 − 100). We consider two alternative algorithms to solving SDP: multiplicative

weight update (MW) and Frank Wolfe (FW).

MW has been considered and analyzed in [Sam+18] for solving this SDP. By the regret analysis

from online learning theory [AHK12], the runtime of MW isO( log k
ε2

) iterations of standard PCA

for k groups and for a given desired error boundε > 0. In practice, MW can be tuned to obtain a

runtime ofO(1) iterations of standard PCA, showing that incorporating fairness to certain farness

criteria to which MW applies costs only a constant runtime overhead. In this thesis, we obtain

MW through convex duality, obtaining a primal-daual algorithm which gives a duality gap and

hence a stopping condition with an error bound. We expand the experiments from [Sam+18] to

large datasets to demonstrate effectiveness of MW. We also propose FW which performs better for

differentiable fairness objective than MW. Both algorithms can be tuned by using a more aggressive

learning rate, giving heuristics to solving SDP that are much faster than a standard SDP solver in

practice.

1.2.5 Experiments

We run our algorithms on two real datasets: Default Credit data [YL09] and Adult Income data

[UC ]. We evaluate the performance of PCA solutions based on two fairness criteria motivated

from welfare economics. Our results show that our algorithms are significantly better based on

both criteria of fairness than standard PCA. The experiment details can be found in Section 5.8.

We also show how two heuristics, MW and FW, scale to a large dataset in practice on several

fairness criteria on multiple groups. We show their efficiency on Census data [AA], which have

more than 600,000 datapoints partitioned into 16 groups and lie in thousands of dimensions. The

details can be found in Section 5.9. The experiments and heuristics are publicly available at:
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https://github.com/SDPforAll/multiCriteriaDimReduction.

1.3 Future Directions

1.3.1 GeneralizedLinear Models

Generalized Linear Models (GLM) generalizes linear regression model where the mean of the

responsey is not a linear function of featuresv>
i x∗ but another function, calledmeanfunctionμ,

that depends onv>
i x∗. The function that relates the meanμ back tov>

i x∗ is called alink function,

denoted byg(μ). An example of GLM is logistics regression, where the mean isμ = 1

1+e−v>
i

x∗
and

the link function isg(μ) = log
(

μ
1−μ

)
.

Optimal design for GLM has been studied; e.g. see [SY12]. The optimal design objective is

min
S⊆[n],|S|=k

f
(
(VSWx∗V >

S )−1
)

(1.3)

whereWx∗ is a diagonal matrix with entrieswi for i = 1, . . . , n are weighting on each examplei.

The challenge is that the weighting depends not only on the model (mean and link function) and

input vectorvi which are constants as an input to the problem, but also onx∗ which is unknown.

If x∗ was known, then one can scale the vectorvi 7→
√

x∗
i vi and apply the standard optimal design

algorithm. This gives rise to several ways to optimize (1.3).

One is to assume a prior, such as Gaussian centered at mean zero, onx∗. This is also known

as Bayesian experimental design, and reduces to optimal design with`2 regularizer. We treat this

topic in more details, including giving our guarantee, in Section 3.9.

One may also assume some boundary conditions onx∗, e.g. lying inside a box[−M,M ]d for

some realM > 0. Then, one can solve (1.3) as a robust optimization: optimize (1.3) over the

worst-casex∗ in this boundary ofx∗.

Another way is to estimatex∗ and use the estimate to approximately solve (1.3). Then, use

the responses from the design to get a better estimate ofx∗. This is similar to alternative mini-
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mization where one tries to minimize (1.3) with respect to subsetsS, and then tox∗, and continue

alternatively.

Besides Bayesian optimal design which reduces to an optimal design with regularizer, it is

unknown if good approximation exists, and whether our approach in this thesis can lead to any

theoretical results. This remains an open direction in the future.

1.3.2 Ridge Regression

We showed that our algorithm can solve an objective motivated from expected square loss of ridge

regression (see Inequality (3.47) and its derivation). However, the objective is motivated from

an assumption on the regularizer parameterλ and is an upper bound of the true square loss, not

exact. It remains an open question whether an approximation algorithm exists for generalλ for

minimizing the square loss of ridge regression directly.

1.3.3 Other Applications

To show approximability ofA-optimal design, we show an efficient implementation of proportional

volume sampling and its generalization for a large class of parameters (Theorem 3.6.2 and other

results in Section 3.6 in general, and regularized version in Section 3.9.7). It remains an open

question what other problems the efficiency of these classes of sampling may be applicable to.
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CHAPTER 2

PRELIMINARIES

To show approximation results and lower bounds of approximations for diverse subset selections

problems, we utilize a technique of relaxation and duality. Here we list the applications of relax-

ation sand integrality gaps toA- andD-optimal design problems. In general, it is crucial that the

relaxations are convex problems to allow for efficient solvability of the relaxations. It is known

that relaxationsA- andD-optimal design are convex ([BV04]). We note that though the objective

of D-optimal is not concave, its logarithm is. Hence, the relaxation is still efficiently solvable.

For details of convex duality in general, we refer readers to [BV04].

2.1 Convex Relaxation and its Dual ofA-optimal Design

We first consider the convex relaxation for theA-optimal design problem given below for the set-

tings without and with repetitions. The difference for without repetition is that there is no upper

bound on the value ofxi (the same is true to other optimal design criteria). This relaxation is clas-

sical, and already appears in, e.g. [Che52]. It is easy to see that the objectivetr
(∑n

i=1 xiviv
>
i

)−1

is convex ([BV04], section 7.5).
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(a)

A-REL(V )

min
x∈Rn

tr





(
n∑

i=1

xiviv
>
i

)−1




n∑

i=1

xi ≤ k

xi ≥ 0 i ∈ [n]

(b)

A-REL -DUAL (V )

max
λ∈Rn

Y ∈Rd×d

2 tr
(
Y 1/2

)
− kλ

λ− v>i Y vi ≥ 0 i ∈ [n]

Y � 0

(c) Convex Relaxation and its Dual for theA-DESIGN problem

With Repetition

min tr

(
n∑

i=1

xiviv
>
i

)−1

s.t.
n∑

i=1

xi = k

0 ≤ xi ∀i ∈ [n]

Without Repetition

min tr

(
n∑

i=1

xiviv
>
i

)−1

(2.1)

s.t.
n∑

i=1

xi = k (2.2)

0 ≤ xi ≤ 1 ∀i ∈ [n]

(2.3)

Let us denote the optimal value of (2.1)–(2.3) byCP. By plugging in the indicator vector of

an optimal integral solution forx, we see thatCP ≤ OPT, where OPT denotes the value of the

optimal solution. We also present the dual forA-optimal design in Figure 2.1c

13



2.2 Convex Relaxation ofD-optimal Design

We describe the relaxation ofD-design with repetitions in Figure 2.2c below. Let OPT denote

the be the common optimum value of (D-REL) and its dual (D-REL-DUAL ). Let I? denote the

indices of the vector in the optimal solution and letφD = det
(∑

i∈I? viv
>
i

) 1
d be its objective. Then

we have thatφD
f ≥ log φD by plugging in the indicator vector of an optimal integral solution forx

to the relaxation. We also present the convex relaxation and its dual without repetition in Figure

2.3c.

(a)

max
x∈Rn

1
d

log det

(
n∑

i=1

xiviv
>
i

)

n∑

i=1

xi ≤ k

xi ≥ 0 i ∈ [1, n]

(b)

min
μ∈R

Y ∈Rd×d

1
d

log det(Y ) +
k

d
μ− 1

μ− v>i Y −1vi ≥ 0 i ∈ [1, n]

Y � 0

(c) Convex Relaxation and its Dual for theD-DESIGN problem

2.3 Integrality Gaps

In this thesis, we useintegrality gapsto show tightness of approximation and to show approxi-

mation factor without solving the convex relaxation, as known as dual-fitting. We refer readers to

[Vaz13] for more examples and significance of integrality gaps, including more uses of dual-fitting

techniques in approximation algorithms.
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(a)

max
1
d

log det

(
n∑

i=1

xiviv
>
i

)

n∑

i=1

xi ≤ k

1 ≥ xi ≥ 0 i ∈ [1, n]

(b)

min
1
d

log det(Y ) +
k

d
μ +

1
d

n∑

i=1

ηi − 1

μ + ηi − v>i Y −1vi ≥ 0 i ∈ [1, n]

ηi ≥ 0 i ∈ [1, n]

Y � 0

(c) Convex Relaxation and its Dual for theD-DESIGN problem without repetitions

2.3.1 Tightnessof Approximations.

To show tightness of approximation, we show the lower bound of approximation by showing the

integrality gapsof relaxations. In particular, if the relaxation of a problem has integrality gapα, any

rounding method from the relaxation will achieve an approximation no better than factorα. We use

this to show the tightness of relaxation ofE-optimal design and lower-bound of approximation of

A-optimal design in this thesis. We also show that the relaxation of Fair Dimensionality Reduction

is not tight through the existence of the gap.

2.3.2 Dual-Fitting

Convex relaxations have their correspondingdual problems. For most well-behaved convex prob-

lems, strong duality holds, i.e. the optimum of dual equals the primal optimum. Hence, one can

use the dual feasible (and not necessarily optimal) solutions to bound the primal optimum. Here

we give the primal and dual of relaxations ofA- andD-optimal designs problems, and note that

strong duality holds in both cases.
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2.4 Local Search and Greedy Algorithms

The local searchalgorithm to maximize an objectivef over setsS ∈ P whereP is a given

collection of sets of the same size is the algorithm that starts with any initial feasible solution in

P . Then, in each step, it checks if there is any swap of an element to increasef , i.e. to delete on

current element inS and add another one such thatf increases and the new set remains inP .

Thegreedyalgorithm to maximize an objectivef over setsS ∈ P whereP is a given collection

of sets starts with any initial feasible solution inP (usually an empty set). In each step, the

algorithm adds an element that increasesf by the highest amount. The algorithm stops when it

reaches a terminating condition to remain feasible. For example, ifP consists of sets of size at

mostk, then one terminates when the set reaches sizek.

Local search and greedy algorithms are among the most basic combinatorial algorithms. They

do not necessarily have theoretical guarantees, yet sometimes the algorithms (or their modifica-

tions) do to some problems despite their simplicity. We refer readers to [Vaz13, CLRS09] for

examples of their applications in approximation algorithms.
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CHAPTER 3

SAMPLING-BASED APPROXIMATION ALGORITHM FOR SUBSET SELECTION

3.1 Introduction

Given a collection of vectors, a common problem is to select a subset of sizek ≤ n that repre-

sentsthe given vectors. To quantify the representability of the chosen set, typically one considers

spectral properties of certain natural matrices defined by the vectors. Such problems arise as ex-

perimental design ([Fed72, Puk06]) in statistics; feature selection ([BMI13]) and sensor placement

problems ([JB09]) in machine learning; matrix sparsification ([BSS12a, SS11]) and column sub-

set selection ([AB13]) in numerical linear algebra. In this work, we consider the optimization

problem of choosing the representative subset that aims to optimize theA-optimality criterion in

experimental design.

Experimental design is a classical problem in statistics ([Puk06]) with recent applications in

machine learning ([JB09, WYS16]). Here the goal is to estimate an unknown vectorw ∈ Rd

via linear measurements of the formyi = v>
i w + ηi wherevi are possible experiments andηi is

assumed to be small i.i.d. unbiased Gaussian error introduced in the measurement. Given a setS of

linear measurements, the maximum likelihood estimateŵ of w can be obtained via a least squares

computation. The error vectorw−ŵ has a Gaussian distribution with mean0 and covariance matrix
(∑

i∈S viv
>
i

)−1
. In the optimal experimental design problem the goal is to pick a cardinalityk set

S out of then vectors such that the measurement error is minimized. Minimality is measured

according to different criteria, which quantify the “size” of the covariance matrix. In this thesis,

we study the classicalA-optimality criterion, which aims to minimize the average variance over

directions, or equivalently the trace of the covariance matrix, which is also the expectation of the

squared Euclidean norm of the error vectorw − ŵ.
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Table 3.1: Summary of approximation ratios ofA-optimal results. We list the best applicable
previous work for comparison. The cells with asterisk * indicate that the ratios are tight with
matching integrality gap of the convex relaxation (2.1)-(2.3).

Problem Ourresult Previous work
Casek = d d * n− d + 1 ([AB13])

Asymptotick >> d
withoutRepetition

1 + ε, for k ≥ Ω
(

d
ε
+ log 1/ε

ε2

)
1 + ε, for k ≥ Ω

(
d
ε2

)
([ALSW17a])

Arbitrary k andd
With Repetition

k
k−d+1

* n− d + 1 ([AB13])

Asymptotick >> d
With Repetition

1 + ε, for k ≥ d + d
ε

* 1 + ε, for k ≥ Ω( d
ε2

) ([ALSW17a])

We letV denote thed×n matrix whose columns are the vectorsv1, . . . , vn and[n] = {1, . . . , n}.

For any setS ⊆ [n], we letVS denote thed × |S| submatrix ofV whose columns correspond to

vectors indexed byS. Formally, in theA-optimal design problem our aim is to find a subsetS

of cardinalityk that minimizes the trace of(VSV >
S )−1 =

(∑
i∈S viv

>
i

)−1
. We also consider the

A-optimal design problem with repetitions, where the chosenS can be a multi-set, thus allowing a

vector to chosen more than once.

Apart from experimental design, the above formulation finds application in other areas such

as sensor placement in wireless networks ([JB09]), sparse least squares regression ([BDM11]),

feature selection fork-means clustering ([BMI13]), and matrix approximation ([AB13]). For ex-

ample, in matrix approximation ([HM07, HM11, AB13]) given ad×n matrixV , one aims to select

a setS of k such that the Frobenius norm of the Moore-Penrose pseudoinverse of the selected ma-

trix VS is minimized. It is easy to observe that this objective equals theA-optimality criterion for

the vectors given by the columns ofV .

3.1.1 Our Contributionsand Results

Our main contribution is to introduce theproportional volume samplingclass of probability mea-

sures to obtain improved approximation algorithms for theA-optimal design problem. We obtain
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improved algorithms for the problem with and without repetitions in regimes wherek is close tod

as well as in the asymptotic regime wherek ≥ d. The improvement is summarized in Table 3.1.

LetUk denote the collection of subsets of[n] of size exactlyk andU≤k denote the subsets of[n] of

size at mostk. We will consider distributions on sets inUk as well asU≤k and state the following

definition more generally.

Definition 3.1.1. Let μ be probability measure on sets inUk (or U≤k). Then the proportional

volume sampling with measureμ picks a set S ∈ Uk (or U≤k) with probability proportional to

μ(S) det(VSV >
S ).

Observe that whenμ is the uniform distribution andk ≤ d then we obtain the standard volume

sampling where one picks a setS proportional todet(VSV >
S ), or, equivalently, to the volume

of the parallelopiped spanned by the vectors indexed byS. Volume sampling measure was first

introduced by [DRVW06] for low-rank matrix matrix approximation (with optimal guarantee in

[DV06]) It has received much attention, and efficient algorithms are known for sampling from

it ([DR10, GS12]). More recently, efficient algorithms were obtained even whenk ≥ d ([LJS17,

SX18]). We discuss the computational issues of sampling from proportional volume sampling in

Lemma 3.1.10 and Section 3.6.2.

Our first result shows that approximating theA-optimal design problem can be reduced to

finding distributions onUk (or U≤k) that areapproximately independent. First, we define the exact

formulation of approximate independence needed in our setting.

Definition 3.1.2. Given integersd ≤ k ≤ n and a vectorx ∈ [0, 1]n such that1>x = k, we call a

measureμ on sets inUk (or U≤k), α-approximate(d − 1, d)-wise independent with respect tox if

for any subsetsT,R ⊆ [n] with |T | = d− 1 and|R| = d, we have

PrS∼μ[T ⊆ S]

PrS∼μ[R ⊆ S]
≤ α

xT

xR

wherexL :=
∏

i∈L xi for anyL ⊆ [n]. We omit “with respect tox" when the context is clear.
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Observe that if the measureμ corresponds to picking each elementi independently with prob-

ability xi, thenPrS∼μ[T⊆S]

PrS∼μ[R⊆S]
= xT

xR . However, this distribution has support on all sets and not just sets

in Uk or U≤k, so it is not allowed by the definition above.

Our first result reduces the search for approximation algorithms forA-optimal design to con-

struction of approximate(d − 1, d)-wise independent distributions. This result generalizes the

connection between volume sampling andA-optimal design established in [AB13] to proportional

volume sampling, which allows us to exploit the power of the convex relaxation and get a signifi-

cantly improved approximation.

Theorem 3.1.3.Given integersd ≤ k ≤ n, suppose that for any a vectorx ∈ [0, 1]n such that

1>x = k there exists a distributionμ on sets inUk (or U≤k) that isα-approximate(d− 1, d)-wise

independent. Then the proportional volume sampling with measureμ gives anα-approximation

algorithm for theA-optimal design problem.

In the above theorem, we in fact only need an approximately independent distributionμ for the

optimal solutionx of the natural convex relaxation for the problem, which is given in (2.1)–(2.3).

The result also bounds the integrality gap of the convex relaxation byα. Theorem 3.1.3 is proved

in Section 3.2.

Theorem 3.1.3 reduces our aim to constructing distributions that have approximate(d− 1, d)-

independence. One way to construct such distribution is through a general class ofhard-core

distributions, defined as follow(s).

Definition 3.1.4. We call a distributionμ onUk (or U≤k) a hard-coredistribution with parameter

λ ∈ Rn
+ if μ(S) ∝ λS :=

∏
i∈S λi for each set inUk (or U≤k).

Convex duality implies that hard-core distributions have the maximum entropy among all dis-

tributions which match the marginals ofμ ([BV04]). Observe that, whileμ places non-zero prob-

ability on exponentially many sets, it is enough to specifyμ succinctly by describingλ. Hard-core

distributions over various structures including spanning trees ([GSS11]) or matchings ([Kah96,
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Kah00]) in a graph displayapproximate independenceand this has found use in combinatorics as

well as algorithm design. Following this theme, we show that certain hard core distributions onUk

andU≤k exhibit approximate(d − 1, d)-independence whenk = d and in the asymptotic regime

whenk >> d.

Theorem 3.1.5.Given integersd ≤ k ≤ n and a vectorx ∈ [0, 1]n such that1>x = k, there exists

a hard-core distributionμ on sets inUk that isd-approximate(d − 1, d)-wise independent when

k = d. Moreover, for anyε > 0, if k = Ω
(

d
ε
+ 1

ε2
log 1

ε

)
, then there is a hard-core distributionμ

onU≤k that is(1+ ε)-approximate(d−1, d)-wise independent. Thus we obtain ad-approximation

algorithm for theA-optimal design problem whenk = d and (1 + ε)-approximation algorithm

whenk = Ω
(

d
ε
+ 1

ε2
log 1

ε

)
.

The above theorem relies on two natural hard-core distributions. In the first one, we consider

the hard-core distribution with parameterλ = x on sets inUk and in the second we consider the

hard-core distribution with parameterλ = (1−ε)x
1−(1−ε)x

(defined co-ordinate wise) on sets inU≤k. We

prove the theorem in Section 3.3.

Our techniques also apply to theA-optimal design problem with repetitions where we obtain

an even stronger result, described below. The main idea is to introduce multiple, possibly exponen-

tially many, copies of each vector, depending on the fractional solution, and then apply proportional

volume sampling to obtain the following result.

Theorem 3.1.6.For all k ≥ d and0 < ε ≤ 1, there is a( k
k−d+1

+ ε)-approximation algorithm

for theA-optimal design problem with repetitions. In particular, there is a(1 + ε)-approximation

whenk ≥ d + d
ε
.

We remark that the integrality gap of the natural convex relaxation is at leastk
k−d+1

(see Sec-

tion 3.7.2) and thus the above theorem results in an exact characterization of the integrality gap

of the convex program (2.1)–(2.3), stated in the following corollary. The proof of Theorem 3.1.6

appears in Section 3.6.3.
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Corollary 3.1.7. For any integersk ≥ d, the integrality gap of the convex program(2.1)–(2.3) for

theA-optimal design with repetitions is exactlyk
k−d+1

.

We also show thatA-optimal design isNP-hard fork = d and moreover, hard to approximate

within a constant factor.

Theorem 3.1.8.There exists a constantc > 1 such that theA-optimal design problem isNP-hard

to c-approximate whenk = d.

The k ≤ d case. TheA-optimal design problem has a natural extension to choosing fewer than

d vectors: our objective in this case is to select a setS ⊆ [n] of size k so that we minimize
∑k

i=1 λ−1
i , whereλ1, . . . , λk are thek largest eigenvalues of the matrixVSV >

S . While this problem

no longer corresponds to minimizing the variance in an experimental design setting, we will abuse

terminology and still call it theA-optimal design problem. This is a natural formulation of the

geometric problem of picking a set of vectors which are as “spread out” as possible. Ifv1, . . . , vn

are the points in a dataset, we can see an optimal solution as a maximally diverse representative

sample of the dataset. Similar problems, but with a determinant objective, have been widely studied

in computational geometry, linear algebra, and machine learning: for example the largest volume

simplex problem, and the maximum subdeterminant problem (see [Nik15] for references to prior

work). [ÇMI09] also studied an analogous problem with the sum in the objective replaced by a

maximum (which extendsE-optimal design).

While our rounding extends easily to thek ≤ d regime, coming up with a convex relaxation

becomes less trivial. We do find such a relaxation and obtain the following result whose proof

appears in Section 3.5.1.

Theorem 3.1.9.There exists apoly(d, n)-timek-approximation algorithm for theA-optimal de-

sign problem whenk ≤ d.
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Integrality Gap. Experimental design problems come with many different objectives including

A, D, E, G, T , each corresponding to a different function of the covariance matrix of the errorw−

ŵ. A natural question is whether they all behave similarly in terms of approximation algorithms.

Indeed, recent results of [ALSW17a, ALSW17b] and [WYS16] give the(1 + ε)-approximation

algorithm in the asymptotic regime,k ≥ Ω
(

d
ε2

)
andk ≥ Ω

(
d2

ε

)
, for many of these variants.

In contrast, we show theoptimal boundsthat can be obtained via the standard convex relaxation

are different for different objectives. We show that for theE-optimality criterion (in which we

minimize the largest eigenvalue of the covariance matrix) getting a(1 + ε)-approximation with the

natural convex relaxation requiresk = Ω( d
ε2

), both with and without repetitions. This is in sharp

contrast to results we obtain here forA-optimality. Thus, different criteria behave differently in

terms of approximability. Our proof of the integrality gap (in Section 3.7.1) builds on a connection

to spectral graph theory and in particular on the Alon-Boppana bound ([Alo86, Nil91]). We prove

an Alon-Boppana style bound for the unnormalized Laplacian of not necessarily regular graphs

with a given average degree.

Computational Issues. While it is not clear whether sampling from proportional volume sam-

pling is possible under general assumptions (for example given a sampling oracle forμ), we obtain

an efficient sampling algorithm whenμ is a hard-core distribution.

Lemma 3.1.10.There exists apoly(d, n)-time algorithm that, given a matrixd × n matrix V ,

integerk ≤ n, and a hard-core distributionμ on sets inUk (or U≤k) with parameterλ, efficiently

samples a set from the proportional volume measure defined byμ.

Whenk ≤ d andμ is a hard-core distribution, the proportional volume sampling can be im-

plemented by the standard volume sampling after scaling the vectors appropriately. Whenk > d,

such a method does not suffice and we appeal to properties of hardcore distributions to obtain the

result. We also present an efficient implementation of Theorem 3.1.6 which runs in time polyno-

mial in log(1/ε). This requires more work since the basic description of the algorithm involves
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implementing proportional volume sampling on an exponentially-sized ground set. This is done in

Section 3.6.3.

We also outline efficient deterministic implementation of algorithms in Theorem 3.1.5 and

3.1.6 in Section 3.6.2 and 3.6.4.

3.1.2 Related Work

Experimental design is the problem of maximizing information obtained from selecting subsets of

experiments to perform, which is equivalent to minimizing the covariance matrix
(∑

i∈S viv
>
i

)−1
.

We focus onA-optimality, one of the criteria that has been studied intensely. We restrict our

attention to approximation algorithms for these problems and refer the reader to [Puk06] for a

broad survey on experimental design.

[AB13] studied theA- andE-optimal design problems and analyzed various combinatorial

algorithms and algorithms based on volume sampling, and achieved approximation ration−d+1
k−d+1

.

[WYS16] found connections between optimal design and matrix sparsification, and used these

connections to obtain a(1 + ε)-approximation whenk ≥ d2

ε
, and also approximation algorithms

under certain technical assumptions. More recently, [ALSW17a, ALSW17b] obtained a(1 + ε)-

approximation whenk = Ω
(

d
ε2

)
both with and without repetitions. We remark that their result also

applies to other criteria such asE andD-optimality that aim to maximize the minimum eigenvalue,

and the geometric mean of the eigenvalues of
∑

i∈S viv
>
i , respectively. More generally, their result

applies to any objective function that satisfies certain regularity criteria.

Improved bounds forD-optimality were obtained by [SX18] who give ane-approximation for

all k andd, and(1+ε)-approximation algorithm whenk = Ω(d
ε
+ 1

ε2
log 1

ε
), with a weaker condition

of k ≥ 2d
ε

if repetitions are allowed. TheD-optimality criterion whenk ≤ d has also been

extensively studied. It captures maximum a-posteriori inference in constrained determinantal point

process models ([KT+12]), and also the maximum volume simplex problem. [Nik15], improving

on a long line of work, gave ae-approximation. The problem has also been studied under more
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general matroid constraints rather than cardinality constraints ([NS16, AG17, SV17]).

[ÇMI09] also studied several related problems in thek ≤ d regime, includingD- and E-

optimality. We are not aware of any prior work onA-optimality in this regime.

The criterion ofE-optimality, whose objective is to maximize the minimum eigenvalue of
∑

i∈S viv
>
i , is closely related to the problem of matrix sparsification ([BSS12a, SS11]) but incom-

parable. In matrix sparsification, we are allowed to weigh the selected vectors, but need to bound

both the largest and the smallest eigenvalue of the matrix we output.

The restricted invertibility principle was first proved in the work of [BT87], and was later

strengthened by [Ver01], [SS10], and [NY17]. Spielman and Srivastava gave a deterministic al-

gorithm to find the well-invertible submatrix whose existence is guaranteed by the theorem. Be-

sides its numerous applications in geometry (see [Ver01] and [You14]), the principle has also

found applications to differential privacy ([NTZ16]), and to approximation algorithms for discrep-

ancy ([NT15]).

Volume sampling [DRVW06] where a setS is sampled with probability proportional todet(VSV >
S )

has been studied extensively and efficient algorithms were given by [DR10] and improved by [GS12].

The probability distribution is also called adeterminantal point process(DPP) and finds many ap-

plications in machine learning ([KT+12]). Recently, fast algorithms for volume sampling have

been considered in [DW17a, DW17b].

While NP-hardness is known for theD- andE-optimality criteria ([ÇMI09]), to the best of

our knowledge noNP-hardness forA-optimality was known prior to our work. Proving such a

hardness result was stated as an open problem in [AB13].

Restricted Invertibility Principle for Harmonic Mean. As an application of Theorem 3.1.9,

we prove a new restricted invertibility principle (RIP) ([BT87]) for the harmonic mean of singular

values. The RIP is a robust version of the elementary fact in linear algebra that ifV is ad×n rank

r matrix, then it has an invertible submatrixVS for someS ⊆ [n] of sizer. The RIP shows that if
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V has stable rankr, then it has a well-invertible submatrix consisting ofΩ(r) columns. Here the

stable rank ofV is the ratio(‖V ‖2HS/‖V ‖2), where‖ ∙ ‖HS =
√

tr(V V >) is the Hilbert-Schmidt,

or Frobenius, norm ofV , and‖ ∙ ‖ is the operator norm. The classical restricted invertibility princi-

ple ([BT87, Ver01, SS10]) shows that when the stable rank ofV is r, then there exists a subset of

its columnsS of sizek = Ω(r) so that thek-th singular value ofVS is Ω (‖V ‖HS/
√

m). [Nik15]

showed there exists a submatrixVS of k columns ofV so that the geometric mean its topk singular

values is on the same order, even whenk equals the stable rank. We show an analogous result for

the harmonic mean whenk is slightly less thanr. While this is implied by the classical restricted

invertibility principle, the dependence on parameters is better in our result for the harmonic mean.

For example, whenk = (1− ε)r, the harmonic mean of squared singular values ofVS can be made

at leastΩ (ε‖V ‖2HS/m), while the tight restricted invertibility principle of Spielman and Srivas-

tava ([SS11]) would only giveε2 in the place ofε. See Theorem 3.5.4 for the precise formulation

of our restricted invertibility principle.

3.1.3 Problem Variants

We discuss several generalization ofA-optimal objectives and corresponding modifications to the

algorithms and our results in this chapter. We summarize this in Table 3.2. Here,E`(M) denote

the elementary symmetric polynomial of degree` of matrixM .

Our first variant is the casek ≤ d, where we generalized-approximation whenk = d to k-

approximation whenk ≤ d. The objective is modified accordingly ask selected vectors span only

in k and notd dimensions. Details can be found in Section 3.5.1.

We generalizeA-optimal design objective to the generalized ratio objective, where its special

case also has been considered by [MS17]. We show that all approximation results inA-optimal

applies to this setting, with a better bound onk. This generalization includesD-optimal design, and

hence proportional volume sampling also gives approximation algorithms forD-design. Summary

of approximation results are in Table 3.3 in Section 3.5.3 which also includes details of this variant.
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Table 3.2: Summary of variants of objectives forA-optimal design problems and their correspond-
ing modifications of algorithms and approximation guarantees

Variants Objectives Sampling distributions Modification of the
results

Integrality
gaps

Original tr
((

VSV >
S

)−1
)

∝ μ(S) det(VSV >
S ) N/A k

k−d+1

k ≤ d
Ek−1(

∑n
i=1 xiviv

>
i )

Ek(
∑n

i=1 xiviv>
i )

∝ μ(S)Ek(VSV >
S ) k-approximation in-

stead ofd
k

Gener-
alized
ratio

El′(VSV >
S )

El(VSV >
S )

∝ μ(S)El(VSV >
S ) Replaced with l in

the bounds ofk

k
k−l′+1

Ridge tr
((

VSV >
S + λI

)−1
)
∝ μ(S) det(VSV >

S + λI) (1 + ελ)-approx
whereε0 = ε (same
as original) and
ελ → 0 asλ→∞

Not yet an-
alyzed

Another variant isridge regression, which motivates the objective ofA-design with regularizer

term added. We show that the main result ofA-optimal design, namely the(1 + ε)-approximation

without repetition for largek, generalizes to this setting and improves as the regularizer parameter

increases. We have not attempted to generalize other results ifA-optimal design in this chapter,

though we suspect that similar analyses can be done. We also have not attempted to check the

integrality gap in this setting. Details can be found in Section 3.9.

Finally, we note that each modified version can be implemented efficiently (including their

deterministic derandomization counterpart).

3.1.4 Organization

In this chapter, we first show the reduction ofA-optimal design problem to constructing an efficient

α-approximate(d − 1, d)-independent distributionμ, i.e. Theorem 3.1.3, in Section 3.2. We

showd-approximation and asymptotically optimal approximation forA-optimal design without

repetition in Section 3.3. We show approximations result when repetitions are allowed in Section
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3.4. We discuss several generalizations ofA-optimal design in Section 3.5. In Section 3.6, we

provide efficient randomized and deterministic derandomization of proportional volume sampling

with parameterμ for any hard-core measureμ. In Section 3.7, we show in integrality gaps results of

A- andE-optimal design. In Section 3.8, we prove APX-hardness ofA-optimal design. In Section

3.9, we discussA-optimal design when aǹ2-regularizer, also known as ridge regression, and show

that a modification of proportional volume sampling still acheives an approximation guarantee for

this problem.

3.2 Approximation via Near Independent Distributions

In this section, we prove Theorem 3.1.3 and give anα-approximation algorithm for theA-optimal

design problem given anα-approximate(d− 1, d)-independent distributionμ.

We first consider the convex relaxation for the problem given below for the settings without

and with repetitions. The relaxation is stated in Preliminaries at (2.1)–(2.3). Let us denote the

optimal value of (2.1)–(2.3) byCP, and denote the value of the optimal solution by OPT. For this

section, we focus on the case when repetitions are not allowed.

3.2.1 ApproximatelyIndependent Distributions

Let us use the notationxS =
∏

i∈S xi, VS a matrix of column vectorsvi ∈ Rd for i ∈ S, and

VS(x) a matrix of column vectors
√

xivi ∈ Rd for i ∈ S. Let ek(x1, . . . , xn) be the degreek

elementary symmetric polynomial in the variablesx1, . . . , xn, i.e. ek(x1, . . . , xn) =
∑

S∈Uk
xS.

By convention,e0(x) = 1 for any x. For any positive semidefiniten × n matrix M , we define

Ek(M) to be ek(λ1, . . . , λn), whereλ(M) = (λ1, . . . , λn) is the vector of eigenvalues ofM .

Notice thatE1(M) = tr(M) andEn(M) = det(M).

To prove Theorem 3.1.3, we give the following algorithmA which is a general framework to

sampleS to solve theA-optimal design problem.

We first prove the following lemma which is needed for proving Theorem 3.1.3.
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Algorithm 3.1 The proportional volume sampling algorithm

1: Given an inputV = [v1, . . . , vn] wherevi ∈ Rd, k a positive integer, and measureμ on sets in
Uk (or U≤k).

2: Solve convex relaxationCP to get a fractional solutionx ∈ Rn
+ with

∑n
i=1 xi = k.

3: Sample setS (fromU≤k orUk) wherePr [S = S] ∝ μ(S) det(VSV >
S ) for anyS ∈ Uk (orU≤k).

. μ(S) may be defined using the solutionx
4: OutputS (If |S| < k, addk − |S| arbitrary vectors toS first).

Lemma 3.2.1.LetT ⊆ [n] be of size no more thand. Then

det(VT (x)>VT (x)) = xT det(V >
T VT )

Proof. The statement is true by multilinearity of the determinant and the exact formula forVT (x)>VT (x)

as follows. The matrixVT (x)>VT (x) has(i, j) entry

(
VT (x)>VT (x)

)
i,j

=
√

xivi ∙
√

xjvj =
√

xixjvi ∙ vj

for each pairi, j ∈ [|T |]. By the multilinearity of the determinant, we can take the factor
√

xi out

from each rowi of VT (x)>VT (x) and the factor
√

xj out from each columnj of VT (x)>VT (x).

This gives

det(VT (x)>VT (x)) =
∏

i∈[|T |]

√
xi

∏

j∈[|T |]

√
xj det(V >

T VT ) = xT det(V >
T VT )

We also need the following identity, which is well-known and extends the Cauchy-Binet for-

mula for the determinant to the functionsEk.

Ek(V V >) = Ek(V
>V ) =

∑

S∈Uk

det(V >
S VS). (3.1)
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The identity (3.1) appeared in [MS17] and, specifically fork = d − 1, as Lemma 3.8 in [AB13].

Now we are ready to prove Theorem 3.1.3.

Proof of Theorem 3.1.3: Let μ′ denote the sampling distribution overU , whereU = Uk or U≤k,

with probability of samplingS ∈ U proportional toμ(S) det(VSV >
S ). Becausetr

(∑
i∈[n] xiviv

>
i

)−1

=

CP ≤ OPT, it is enough to show that

E
S∼μ′



tr

(
∑

i∈S

viv
>
i

)−1


 ≤ α tr




∑

i∈[n]

xiviv
>
i





−1

. (3.2)

Note that in case|S| < k, algorithmA addsk− |S| arbitrary vector toS, which can only decrease

the objective value of the solution.

First, a simple but important observation ([AB13]): for anyd× d matrixM of rankd, we have

tr M−1 =
d∑

i=1

1

λi(M)
=

ed−1(λ(M))

ed(λ(M))
=

Ed−1(M)

det M
. (3.3)

Therefore, we have

E
S∼μ′



tr

(
∑

i∈S

viv
>
i

)−1


 =
∑

S∈U

Pr
μ′

[S = S] tr
(
VSV >

S

)−1

=
∑

S∈U

μ(S) det
(
VSV >

S

)

∑
S′∈U μ(S ′) det(VS′V >

S′ )

Ed−1(VSV >
S )

det
(
VSV >

S

)

=

∑
S∈U μ(S)Ed−1(VSV >

S )
∑

S∈U μ(S) det(VSV >
S )

.

We can now apply the Cauchy-Binet formula (3.1) forEd−1, Ed = det, and the matrixVSV >
S to
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the numerator and denominator on the right hand side, and we get

E
S∼μ′



tr

(
∑

i∈S

viv
>
i

)−1


 =

∑
S∈U

∑
|T |=d−1,T⊆S μ(S) det(V >

T VT )
∑

S∈U μ(S)
∑

|R|=d,R⊆S det(V >
R VR)

=

∑
|T |=d−1,T⊆[n] det

(
V >

T VT

)∑
S∈U ,S⊇T μ(S)

∑
|R|=d,R⊆[n] det

(
V >

R VR

)∑
S∈U ,S⊇R μ(S)

=

∑
|T |=d−1,T⊆[n] det

(
V >

T VT

)
Pr
μ

[S ⊇ T ]
∑

|R|=d,R⊆[n] det
(
V >

R VR

)
Pr
μ

[S ⊇ R]

where we change the order of summation at the second to last equality. Next, we apply (3.3) and

the Cauchy-Binet formula (3.1) in a similar way to the matrixV (x)V (x)>:

tr
(
V (x)V (x)>

)−1
=

Ed−1(V (x)V (x)>)

det(V (x)V (x)>)
=

∑
|T |=d−1,T⊆[n] det(VT (x)>VT (x))
∑

|R|=d,R⊆[n] det(VR(x)>VR(x))

=

∑
|T |=d−1,T⊆[n] det

(
V >

T VT

)
xT

∑
|R|=d,R⊆[n] det

(
V >

R VR

)
xR

where we use the fact thatdet(VR(x)>VR(x)) = xR det(V >
R VR) anddet(VT (x)>VT (x)) = xT det(V >

T VT )

in the last equality by Lemma 3.2.1.

Hence, the inequality (3.2) which we want to show is equivalent to

∑
|T |=d−1,T⊆[n] det

(
V >

T VT

)
Pr
μ

[S ⊇ T ]
∑

|R|=d,R⊆[n] det
(
V >

R VR

)
Pr
μ

[S ⊇ R]
≤ α

∑
|T |=d−1,T⊆[n] det

(
V >

T VT

)
xT

∑
|R|=d,R⊆[n] det

(
V >

R VR

)
xR

(3.4)

which is equivalent to

∑

|T |=d−1,|R|=d

det
(
V >

T VT

)
det
(
V >

R VR

)
∙ xR ∙ Pr

μ
[S ⊇ T ]

≤ α
∑

|T |=d−1,|R|=d

det
(
V >

T VT

)
det
(
V >

R VR

)
∙ xT ∙ Pr

μ
[S ⊇ R] . (3.5)
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By the assumption that
Pr
μ

[S⊇T ]

Pr
μ

[S⊇R]
≤ αxT

xR for each subsetT,R ⊆ [n] with |T | = d− 1 and|R| = d,

det
(
V >

T VT

)
det
(
V >

R VR

)
∙ xR ∙ Pr

μ
[S ⊇ T ] ≤ α det

(
V >

T VT

)
det
(
V >

R VR

)
∙ xT ∙ Pr

μ
[S ⊇ R] (3.6)

Summing (3.6) over allT,R proves (3.5). �

3.3 Approximating Optimal Design without Repetitions

In this section, we prove Theorem 3.1.5 by constructingα-approximate(d − 1, d)-independent

distributions for appropriate values ofα. We first consider the case whenk = d and then the

asymptotic case whenk = Ω
(

d
ε
+ 1

ε2
log 1

ε

)
. We also remark that the argument fork = d can be

generalized for allk ≤ d, and we discuss this generalization in Section 3.5.1.

3.3.1 d-approximationfor k = d

We prove the following lemma which, together with Theorem 3.1.3, implies thed-approximation

for A-optimal design whenk = d.

Lemma 3.3.1.Let k = d. The hard-core distributionμ onUk with parameterx is d-approximate

(d− 1, d)-independent.

Proof. Observe that for anyS ∈ Uk, we haveμ(S) = xS

Z
whereZ =

∑
S′∈Uk

xS′
is the normaliza-

tion factor. For anyT ⊆ [n] such that|T | = d− 1, we have

Pr
S∼μ

[S ⊇ T ] =
∑

S∈Uk:S⊇T

xS

Z
=

xT

Z
∙




∑

i∈[n]\T

xi



 ≤ d
xT

Z
.
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where we usek = d and
∑

i∈[n]\T xi ≤ k = d. For anyR ⊆ [n] such that|R| = d, we have

Pr
S∼μ

[S ⊇ R] =
∑

S∈Uk:S⊇R

xS

Z
=

xR

Z
.

Thus for anyT,R ⊆ [n] such that|T | = d− 1 and|R| = d, we have

Pr
S∼μ

[S ⊇ T ]

Pr
S∼μ

[S ⊇ R]
≤ d

xT

xR
.

3.3.2 (1 + ε)-approximation

Now, we show that there is a hard-core distributionμ onU≤k that is(1+ ε)-approximate(d−1, d)-

independent whenk = Ω
(

d
ε
+ 1

ε2
log 1

ε

)
.

Lemma 3.3.2.Fix some0 < ε ≤ 2, and letk = Ω
(

d
ε
+ log(1/ε)

ε2

)
. The hard-core distributionμ on

U≤k with parameterλ, defined by

λi =
xi

1 + ε
4
− xi

,

is (1 + ε)-approximate(d− 1, d)-wise independent.

Proof. For simplicity of notation, let us denoteβ = 1+ ε
4
, andξi = xi

β
. Observe that the probability

mass underμ of any setS of size at mostk is proportional to
(∏

i∈S ξi

) (∏
i 6∈S (1− ξi)

)
. Thus,

μ is equivalent to the following distribution: sample a setB ⊆ [n] by including everyi ∈ [n] in

B independently with probabilityξi; then we haveμ(S) = Pr[B = S | |B| ≤ k] for everyS of

size at mostk. Let us fix for the rest of the proof arbitrary setsT,R ⊆ [n] of sized − 1 andd,

respectively. By the observation above, forS sampled according toμ, andB as above, we have

Pr[S ⊇ T ]

Pr[S ⊇ R]
=

Pr[B ⊇ T and|B| ≤ k]

Pr[B ⊇ R and|B| ≤ k]
≤

Pr[B ⊇ T ]

Pr[B ⊇ R and|B| ≤ k]
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We havePr[B ⊇ T ] = ξT = xT

βd−1 . To simplify the probability in the denominator, let us introduce,

for eachi ∈ [n], the indicator random variableYi, defined to be1 if i ∈ B and0 otherwise. By the

choice ofB, theYi’s are independent Bernoulli random variables with meanξi, respectively. We

can write

Pr[B ⊇ R and|B| ≤ k] = Pr

[

∀i ∈ R : Yi = 1 and
∑

i 6∈R

Yi ≤ k − d

]

= Pr[∀i ∈ R : Yi = 1] Pr

[
∑

i 6∈R

Yi ≤ k − d

]

,

where the last equality follows by the independence of theYi. The first probability on the right

hand side is justξR = xR

βd , and plugging into the inequality above, we get

Pr[S ⊇ T ]

Pr[S ⊇ R]
≤ β

xT

xR Pr[
∑

i 6∈R Yi ≤ k − d]
. (3.7)

We claim that

Pr[
∑

i 6∈R

Yi ≤ k − d] ≥ 1−
ε

4

as long ask = Ω
(

d
ε
+ 1

ε2
log 1

ε

)
. The proof follows from standard concentration of measure argu-

ments. LetY =
∑

i 6∈R Yi, and observe thatE[Y ] = 1
β
(k − x(R)), wherex(R) is shorthand for

∑
i∈R xi. By Chernoff’s bound,

Pr[Y > k − d] < e−
δ2

3β
(k−x(R)) (3.8)

where

δ =
β(k − d)

k − x(R)
− 1 =

(β − 1)k + x(R)− βd

k − x(R)
.
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The exponent on the right hand side of (3.8) simplifies to

δ2(k − x(R))

3β
=

((β − 1)k + x(R)− βd)2

3β(k − x(R))
≥

((β − 1)k − βd)2

3βk
.

For the boundPr[Y > k − d] ≤ ε
4
, it suffices to have

(β − 1)k − βd ≥
√

3β log(4/ε)k.

Assuming thatk ≥ C log(4/ε)
ε2

for a sufficiently big constantC, the right hand side is at mostεk
8

. So,

as long ask ≥ βd
β−1− ε

8
, the inequality is satisfied andPr[Y > k − d] < ε

4
, as we claimed.

The proof of the lemma now follows since for any|T | = d− 1 and|R| = d, we have

Pr[S ⊇ T ]

Pr[S ⊇ R]
≤ β

xT

xR Pr[
∑

i 6∈R Yi ≤ k − d]
≤

1 + ε
4

1− ε
4

xT

xR
, (3.9)

and
1+ ε

4

1− ε
4
≤ 1 + ε.

The (1 + ε)-approximation for large enoughk in Theorem 3.1.5 now follows directly from

Lemma 3.3.2 and Theorem 3.1.3.

3.4 Approximately Optimal Design with Repetitions

In this section, we consider theA-optimal design without the boundxi ≤ 1 and prove Theo-

rem 3.1.6. That is, we allow the sample setS to be a multi-set. We obtain a tight bound on the

integrality gap in this case. Interestingly, we reduce the problem to a special case ofA-optimal

design without repetitions that allows us to obtained an improved approximation.

We first describe a sampling Algorithm 3.2 that achieves ak(1+ε)
k−d+1

-approximation for anyε > 0.

In the algorithm, we introducepoly(n, 1/ε) number of copies of each vector to ensure that the

fractional solution assigns equal fractional value for each copy of each vector. Then we use the
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proportional volume sampling where the measure distributionμ is defined on sets of the new larger

ground setU over copies of the original input vectors. The distributionμ is just the uniform dis-

tribution over subsets of sizek of U , and we are effectively using traditional volume sampling

overU . Notice, however, that the distribution over multisets of the original set of vectors is dif-

ferent. The proportional volume sampling used in the algorithm can be implemented in the same

way as the one used for without repetition setting, as described in Section 3.6.1, which runs in

poly(n, d, k, 1/ε) time.

In Section 3.6.3, we describe a new implementation of proportional volume sampling procedure

which improves the running time topoly(n, d, k, log(1/ε)). The new algorithm is still efficient

even whenU has exponential size by exploiting the facts thatμ is uniform and thatU has only at

mostn distinct vectors.

Algorithm 3.2 Approximation Algorithm forA-optimal design with repetitions

1: Givenx ∈ Rn
+ with

∑n
i=1 xi = k, ε > 0, and vectorsv1, . . . , vn.

2: Let q = 2n
εk

. Setx′
i := k−n/q

k
xi for eachi, and round eachx′

i up to a multiple of1/q.
3: If

∑n
i=1 x′

i < k, add1/q to anyx′
i until

∑n
i=1 x′

i = k.
4: Createqx′

i copies of vectorvi for eachi ∈ [n]. DenoteW the set of size
∑n

i=1 qx′
i = qk of all

those copies of vectors. DenoteU the new index set ofWof sizeqk. . This implies that we
can assume that our new fractional solutionyi = 1/q is equal over alli ∈ U

5: Sample a subsetS of U of sizek wherePr[S = S] ∝ det(WSW>
S ) for eachS ⊆ U of sizek.

6: SetXi =
∑

w∈WS
1(w is a copy ofvi) for all i ∈ [n] . Get an integral solutionX by counting

numbers of copies ofvi in S.
7: OutputX.

Lemma 3.4.1. Algorithm 3.2, when given as inputx ∈ Rn
+ s.t.

∑n
i=1 xi = k, 1 ≥ ε > 0, and

v1, . . . , vn, outputs a randomX ∈ Zn
+ with

∑n
i=1 Xi = k such that

E



tr

(
n∑

i=1

Xiviv
>
i

)−1


 ≤
k(1 + ε)

k − d + 1
tr

(
n∑

i=1

xiviv
>
i

)−1
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Proof. Definex′
i, y,W,U,S, X as in the algorithm. We will show that

E



tr

(
n∑

i=1

Xiviv
>
i

)−1


 ≤
k

k − d + 1
tr

(
n∑

i=1

x′
iviv

>
i

)−1

≤
k(1 + ε)

k − d + 1
tr

(
n∑

i=1

xiviv
>
i

)−1

The second inequality is by observing that the scalingx′
i := k−n/q

k
xi multiplies the objective

tr
(∑n

i=1 xiviv
>
i

)−1
by a factor of

(
k−n/q

k

)−1

= (1− ε/2)−1 ≤ 1 + ε, and that roundingxi up and

adding1/q to anyxi can only decrease the objective.

To show the first inequality, we first translate the two key quantitiestr
(∑n

i=1 x′
iviv

>
i

)−1
and

tr
(∑n

i=1 Xiviv
>
i

)−1
from the with-repetition setting overV and[n] to the without-repetition set-

ting overW andU . First,tr
(∑n

i=1 x′
iviv

>
i

)−1
= tr

(∑
i∈U yiwiwi

>
)−1

, whereyi = 1
q

are all equal

over all i ∈ U , andwi is the copied vector inW at indexi ∈ U . Second,tr
(∑n

i=1 Xiviv
>
i

)−1
=

tr
(∑

i∈S⊆U wiwi
>
)−1

.

Let μ′ be the distribution over subsetsS of U of sizek defined byμ′(S) ∝ det(WSW>
S ). It is,

therefore, sufficient to show that the sampling distributionμ′ satisfies

E
S∼μ′



tr

(
∑

i∈S⊆U

wiwi
>

)−1


 ≤
k

k − d + 1
tr

(
∑

i∈U

yiwiwi
>

)−1

(3.10)

Observe thatμ′ is the same as sampling a setS ⊆ U of sizek with probability proportional to

μ(S) det(WSW>
S ) whereμ is uniform. Hence, by Theorem 3.1.3, it is enough to show that for all

T,R ⊆ U with |T | = d− 1, |R| = d,

Pr
μ

[S ⊇ T ]

Pr
μ

[S ⊇ R]
≤

(
k

k − d + 1

)
yT

yR
(3.11)
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With μ being uniform andyi being all equal to1/q, the calculation is straightforward:

Pr
μ

[S ⊇ T ]

Pr
μ

[S ⊇ R]
=

(
qk−d+1
k−d+1

)
/
(

qk
k

)

(
qk−d
k−d

)
/
(

qk
k

) =
qk − d + 1

k − d + 1
and

yT

yR
=

1

yi

= q (3.12)

Therefore, (3.11) holds because

Pr
μ

[S ⊇ T ]

Pr
μ

[S ⊇ R]
∙

(
yT

yR

)−1

=
qk − d + 1

k − d + 1
∙
1

q
≤

qk

k − d + 1
∙
1

q
=

k

k − d + 1
,

Remark 3.4.2. The approximation ratio for A-optimality with repetitions fork ≥ d is tight, since

it matches the integrality gap lower bound stated in Theorem 3.7.3.

3.5 Generalizations

In this section we show that our arguments extend to the regimek ≤ d and give ak-approximation

(without repetitions), which matches the integrality gap of our convex relaxation. We also derive a

restricted invertibility principle for the harmonic mean of eigenvalues.

3.5.1 k-ApproximationAlgorithm for k ≤ d

Recall that our aim is to select a setS ⊆ [n] of sizek ≤ d that minimizes
∑k

i=1 λ−1
i , where

λ1, . . . , λk are thek largest eigenvalues of the matrixVSV >
S . We need to reformulate our convex

relaxation since whenk < d, the inverse ofM(S) =
∑

i∈S viv
>
i for |S| = k is no longer well-
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defined. We write a new convex program:

min
Ek−1

(∑n
i=1 xiviv

>
i

)

Ek

(∑n
i=1 xiviv>

i

) (3.13)

s.t.
n∑

i=1

xi = k (3.14)

0 ≤ xi ≤ 1 ∀i ∈ [n] (3.15)

Once again we denote the optimal value of (3.13)–(3.15) byCP. While the proof that this re-

laxes the original problem is easy, the convexity is non-trivial. Fortunately, ratios of symmetric

polynomials are known to be convex.

Lemma 3.5.1. The optimization problem(3.13)–(3.15) is a convex relaxation of theA-optimal

design problem whenk ≤ d.

Proof. To prove convexity, we first note that the functionf(M) = Ek(M)
Ek−1(M)

is concave on positive

semidefinite matricesM of rank at leastk. This was proved by [BM61, Theorem 4] for positive

definiteM , and can be extended toM of rank at leastk by a limiting argument. Alternatively, we

can use the theorem of [ML57] that the functiong(λ) = ek(λ)
ek−1(λ)

is concave on vectorsλ ∈ Rd with

non-negative entries and at leastk positive entries. Becauseg is symmetric under permutations of

its arguments and concave, andf(M) = g(λ(M)), whereλ(M) is the vector of eigenvalues ofM ,

by a classical result of [Dav57] the functionf is concave on positive semidefinite matrices of rank

at leastk.

Notice that the objective (3.13) equals 1
f(M(x))

for the linear matrix-valued functionM(x) =
∑n

i=1 xiviv
>
i . Therefore, to prove that (3.13) is convex inx for non-negativex, it suffices to show

that 1
f(M)

is convex inM for positive semidefiniteM . Since the function1
z

is convex and monotone

decreasing over positive realsz, andf is concave and non-negative over positive semidefinite

matrices of rank at leastk, we have that 1
f(M)

is convex inM , as desired. Then (3.13)–(3.15)
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is an optimization problem with a convex objective and affine constraints, so we have a convex

optimization problem.

Let OPT be the optimal value of theA-optimal design problem, and letS be an optimal solu-

tion. We need to show thatCP ≤ OPT. To this end, letx be the indicator vector ofS, i.e.xi = 1

if and only if i ∈ S, andxi = 0 otherwise. Then,

CP ≤
Ek−1(M(S))

Ek(M(S))
=

∑k
i=1

∏
j 6=i λj(M(S))

∏
i λi(M(S))

=
k∑

i=1

1

λi(M(S))
= OPT.

Above,λ1(M(S)), . . . , λk(M(S)) are, again, the nonzero eigenvalues ofM(S) =
∑

i∈S viv
>
i .

We shall use the natural analog of proportional volume sampling: given a measureμ on subsets

of sizek, we sample a setS with probability proportional toμ(S)Ek(M(S)). In fact, we will

only takeμ(S) proportional toxS, so this reduces to samplingS with probability proportional to

Ek(
∑

i∈S xiviv
>
i ), which is the standard volume sampling with vectors scaled by

√
xi, and can be

implemented efficiently using, e.g. the algorithm of [DR10].

The following version of Theorem 3.1.3 still holds with this modified proportional volume

sampling. The proof is exactly the same, except for mechanically replacing every instance of

determinant byEk, of Ed−1 by Ek−1, and in general ofd by k.

Theorem 3.5.2.Given integersk ≤ d ≤ n and a vectorx ∈ [0, 1]n such that1>x = k, sup-

pose there exists a measureμ on Uk that is α-approximate(k − 1, k)-wise independent. Then

for x the optimal solution of(3.13)–(3.15), proportional volume sampling with measureμ gives a

polynomial timeα-approximation algorithm for theA-optimal design problem.

We can now give the main approximation guarantee we have fork ≤ d.

Theorem 3.5.3.For anyk ≤ d, proportional volume sampling with the hard-core measureμ on

Uk with parameterx equal to the optimal solution of(3.13)–(3.15)gives ak-approximation to the

A-optimal design problem.
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Proof. In view of Theorem 3.5.2, we only need to show thatμ is k-approximate(k − 1, k)-wise

independent. This is a straightforward calculation: forS ∼ μ, and anyT ⊆ [n] of sizek − 1 and

R ⊆ [n] of sizek,
Pr[S ⊇ T ]

Pr[S ⊇ R]
=

xT
∑

i 6∈T xi

xR
≤ k

xT

xR
.

This completes theproof.

The algorithm can be derandomized using the method of conditional expectations analogously

to the case ofk = d that we will show in Theorem 3.6.5.

Thek-approximation also matches the integrality gap of (3.13)–(3.15). Indeed, we can take a

k-dimensional integrality gap instancev1, . . . , vn, and embed it inRd for anyd > k by padding

each vector with0’s. On such an instance, the convex program (3.13)–(3.15) is equivalent to the

convex program (2.1)–(2.3). Thus the integrality gap that we will show in Theorem 3.7.3 implies

an integrality gap ofk for all d ≥ k.

3.5.2 Restricted Invertibility Principlefor Harmonic Mean

Next we state and prove our restricted invertibility principle for harmonic mean in a general form.

Theorem 3.5.4.Letv1, . . . , vn ∈ Rd, andc1, . . . , cn ∈ R+, and defineM =
∑n

i=1 civiv
>
i . For any

k ≤ r = tr(M)
‖M‖ , there exists a subsetS ⊆ [n] of sizek such that thek largest eigenvaluesλ1, . . . , λk

of the matrix
∑

i∈S viv
>
i satisfy

(
1

k

k∑

i=1

1

λi

)−1

≥
r − k + 1

r
∙

tr(M)
∑n

i=1 ci

.

Proof. Without loss of generality we can assume that
∑n

i=1 ci = k. Then, by Theorem 3.5.3,

proportional volume sampling with the hard-core measureμ onUk with parameterc = (c1, . . . , cn)
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gives a random setS of sizek such that

E

[
k∑

i=1

1

λi(M(S))

]

≤ k
Ek−1(M)

Ek(M)
,

whereλi(M(S)) is thei-th largest eigenvalues ofM(S) =
∑

i∈S viv
>
i . Therefore, there exists a

setS of sizek such that

(
1

k

k∑

i=1

1

λi(M(S))

)−1

≥
Ek(M)

Ek−1(M)
=

ek(λ(M))

ek−1(λ(M))
,

whereλ(M) is the vector of eigenvalues ofM . In the rest of the proof we compare the right hand

side above withtr(M).

Recall that a vectorx ∈ Rd
+ is majorized by a vectory ∈ Rd

+, writtenx ≺ y, if
∑i

j=1 x(j) ≤
∑i

j=1 y(j) holds for alli ∈ [n], and
∑n

i=1 xi =
∑n

i=1 yi. Herex(j) denotes thej-th largest coor-

dinate ofx, and similarly fory(j). Recall further that a functionf : Rd
+ → R is Schur-concave

if x ≺ y impliesf(x) ≥ f(y). The function ek(x)
ek−1(x)

was shown to be Schur concave by [GS12];

alternatively, it is symmetric under permutations ofx and concave, as shown in [ML57] (and men-

tioned above), which immediately implies that it is Schur-concave. We define a vectorx which

majorizesλ(M) by settingxi = 1
r

∑d
i=1 λi(M) for i ∈ [r], andxi = 0 for i > r (we assume here

thatλ1(M) ≥ . . . ≥ λd(M)). By Schur concavity,

ek(λ(M))

ek−1(λ(M))
≤

ek(x)

ek−1(x)
=

r − k + 1

rk

d∑

i=1

λi(M).

Since
∑d

i=1 λi(M) = tr(M), and we assumed that
∑n

i=1 ci = k, this completes the proof of the

theorem.
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3.5.3 TheGeneralizedRatio Objective

In A-optimal design, givenV = [v1 . . . vn] ∈ Rd×n, we state the objective as minimizing

tr

(
∑

i∈S

viv
>
i

)−1

=
Ed−1(VSV >

S )

Ed(VSV >
S )

.

over subsetS ⊆ [n] of sizek. In this section, for any given0 ≤ l′ < l ≤ d, we consider the

following generalized ratio problem:

min
S⊆[n],|S|=k

(
El′(VSV >

S )

El(VSV >
S )

) 1
l−l′

(3.16)

The above problem naturally interpolates betweenA-optimality andD-optimality. This follows

since forl = d andl′ = 0, the objective reduces to

min
S⊆[n],|S|=k

(
1

det(VSV >
S )

) 1
d

. (3.17)

A closely related generalization betweenA- andD-criteria was considered in [MS17]. Indeed,

their generalization corresponds to the case whenl = d andl′ takes any value from0 andd− 1.

In this section, we show that our results extend to solving generalized ratio problem. We begin

by describing a convex program for the generalized ratio problem. We then generalize the propor-

tional volume sampling algorithm toproportionall-volume sampling. Following the same plan as

in the proof ofA-optimality, we then reduce the approximation guarantee to near-independence

properties of certain distribution. Here again, we appeal to the same product measure and obtain

identical bounds, summarized in Table 3.3, on the performance of the algorithm.

Convex Relaxation

As in solvingA-optimality, we may define relaxations for with and without repetitions as follows.
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Table 3.3: Summary of approximation ratio obtained by our work on generalized ratio problem.

Problem
A-optimal

(l′ = d− 1, l = d)
min
|S|=k

(
El′ (VSV >

S )

El(VSV >
S )

) 1
l−l′ D-optimal

(l′ = 0, l = d)

Casek = d d l ∙ [(l − l′)!]−
1

l−l′ ≤ el
l−l′

e

Asymptotick >> d
withoutRepetitions

1 + ε, for

k ≥ Ω
(

d
ε
+ log 1/ε

ε2

) 1 + ε, for

k ≥ Ω
(

l
ε
+ log 1/ε

ε2

) 1 + ε, for

k ≥ Ω
(

d
ε
+ log 1/ε

ε2

)

Arbitrary k andd
With Repetitions

k
k−d+1

k
k−l+1

k
k−d+1

Asymptotick >> d
With Repetitions

1 + ε, for
k ≥ d + d

ε

1 + ε, for
k ≥ l + l

ε

1 + ε, for
k ≥ d + d

ε

With Repetitions

min

(
El′
(
V (x)V (x)>

)

El (V (x)V (x)>)

) 1
l−l′

s.t.
n∑

i=1

xi = k

0 ≤ xi ∀i ∈ [n]

Without Repetitions

min

(
El′
(
V (x)V (x)>

)

El (V (x)V (x)>)

) 1
l−l′

(3.18)

s.t.
n∑

i=1

xi = k (3.19)

0 ≤ xi ≤ 1 ∀i ∈ [n] (3.20)

We now show that

(
El′(V (x)V (x)>)
El(V (x)V (x)>)

) 1
l−l′

is convex inx.

Lemma 3.5.5.Letd be a positive integer. For any given pair0 ≤ l′ < l ≤ d, the function

fl′,l(M) =

(
El′(M)

El(M)

) 1
l−l′

(3.21)

is convex overd× d positive semidefinite matrixM .

Proof. By Theorem 3 in [BM61],(fl′,l(M))−1 =
(

El(M)
El′ (M)

) 1
l−l′

is concave on positive semidefinite

matricesM for each0 ≤ l′ < l ≤ d. The function1
z

is convex and monotone decreasing over the
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positive realsz, and this, together with the concavity of(fl′,l(M))−1 and that(fl′,l(M))−1 > 0,

implies thatfl′,l(M) is convex inM .

Approximation via(l′, l)-Wise Independent Distribution

Let 0 ≤ l′ < l ≤ d andU ∈ {Uk,U≤k}. We first show connection of approximation guarantees

on objectives
(

El′ (VSV >
S )

El(VSV >
S )

) 1
l−l′

and El′ (VSV >
S )

El(VSV >
S )

. Suppose we already solve the convex relaxation of

generalized ratio problem (3.18)-(3.20) and get a fractional solutionx. Suppose that a randomized

algorithmA, upon receiving inputV ∈ Rd×n andx ∈ Rn, outputsS ∈ U such that

E
S∼A

[
El′(VSV >

S )

El(VSV >
S )

]

≤ α′El′(V (x)V (x)>)

El(V (x)V (x)>)
(3.22)

for some constantα′ > 0. By the convexity of the functionf(z) = zl−l′ over positive realsz, we

have

E

[
El′(M)

El(M)

]

≥ E

[(
El′(M)

El(M)

) 1
l−l′
]l−l′

(3.23)

for any semi-positive definite matrixM . Combining (3.22) and (3.23) gives

E
S∼A

[(
El′(VSV >

S )

El(VSV >
S )

) 1
l−l′
]

≤ α

(
El′(V (x)V (x)>)

El(V (x)V (x)>)

) 1
l−l′

(3.24)

whereα = (α′)
1

l−l′ . Therefore, it is sufficient for an algorithm to satisfy (3.22) and give a bound

onα′ in order to solve the generalized ratio problem up to factorα.

To show (3.22), we first define the proportionall-volume sampling andα-approximate(l′, l)-

wise independent distribution.

Definition 3.5.6. Let μ be probability measure on sets inUk (or U≤k). Then the proportionall-

volume sampling with measureμ picks a set of vectors indexed byS ∈ Uk (orU≤k) with probability

proportional toμ(S)El(VSV >
S ).
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Definition 3.5.7. Given integersd, k, n, a pair of integers0 ≤ l′ ≤ l ≤ d, and a vectorx ∈

[0, 1]n such that1>x = k, we call a measureμ on sets inUk (or U≤k), α-approximate(l′, l)-wise

independent with respect tox if for any subsetsT ′, T ⊆ [n] with |T ′| = l′ and|T | = l, we have

PrS∼μ[T ′ ⊆ S]

PrS∼μ[T ⊆ S]
≤ αl−l′ ∙

xT ′

xT

wherexL :=
∏

i∈L xi for anyL ⊆ [n]. We omit “with respect tox" when the context is clear.

The following theorem reduces the approximation guarantee in (3.22) toα-approximate(l′, l)-

wise independence properties of a certain distributionμ by utilizing proportionall-volume sam-

pling.

Theorem 3.5.8.Given integersd, k, n, V = [v1 . . . vn] ∈ Rd×n, and a vectorx ∈ [0, 1]n such that

1>x = k, suppose there exists a distributionμ on sets inUk (or U≤k) and isα-approximate(l′, l)-

wise independent for some0 ≤ l′ < l ≤ d. Then the proportionall-volume sampling with measure

μ gives anα-approximation algorithm for minimizing
(

El′ (VSV >
S )

El(VSV >
S )

) 1
l−l′

over subsetsS ⊆ [n] of size

k.

Proof. Let μ′ denote the sampling distribution overU , whereU = Uk or U≤k, with probability of

samplingS ∈ U proportional toμ(S)El(VSV >
S ). We mechanically replaceT,R, d− 1, d, and det

in the proof of Theorem 3.1.3 withT ′, T, l′, l, andEl to obtain

E
S∼μ′



tr

(
∑

i∈S

viv
>
i

)−1


 ≤ αl−l′ tr




∑

i∈[n]

xiviv
>
i





−1

.

We finish the proof by observing that (3.22) implies (3.24), as discussed earlier.

The following subsections generalize algorithms and proofs for with and without repetitions.

The algorithm for generalized ratio problem can be summarized in Algorithm 3.4. Note that effi-

cient implementation of the sampling is described in Section 3.6.5.
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Algorithm 3.3 Generalized ratio approximation algorithm

1: Given an inputV = [v1, . . . , vn] wherevi ∈ Rd, k a positive integer, and a pair of integers
0 ≤ l′ ≤ l ≤ d.

2: Solve the convex relaxationx = argminx∈Jn:1>x=k

(
El′(V (x)V (x)>)
El(V (x)V (x)>)

) 1
l−l′

whereJ = [0, 1] if

without repetitions orR+ if with repetitions.
3: if k = l then
4: Sampleμ′(S) ∝ xSEl

(
VSV >

S

)
for eachS ∈ Uk

5: else ifwithout repetition setting andk ≥ Ω
(

d
ε
+ log(1/ε)

ε2

)
then

6: Sampleμ′(S) ∝ λSEl

(
VSV >

S

)
for eachS ∈ U≤k whereλi := xi

1+ε/4−xi

7: else ifwith repetition settingthen
8: Run Algorithm 3.2, except modifying the sampling step to sample a subsetS of U of size

k with Pr[S = S] ∝ El(WSW>
S ).

9: OutputS (If |S| < k, addk − |S| arbitrary vectors toS first).

Approximation Guarantee for Generalized Ratio Problem without Repetitions

We prove the following theorem which generalize Lemmas 3.3.1 and 3.3.2. Theα-approximate

(l′, l)-wise independence property, together with Theorem 3.5.8, implies an approximation guar-

antee for generalized ratio problem without repetitions fork = l and asymptotically fork =

Ω
(

l
ε
+ 1

ε2
log 1

ε

)
.

Theorem 3.5.9.Given integersd, k, n, a pair of integers0 ≤ l′ ≤ l ≤ d, and a vectorx ∈ [0, 1]n

such that1>x = k, the hard-core distributionμ on sets inUk with parameterx is α-approximate

(l′, l)-wise independent whenk = l for

α = l ∙ [(l − l′)!]
− 1

l−l′ ≤
el

l − l′
(3.25)

Moreover, for any0 < ε ≤ 2 whenk = Ω
(

l
ε
+ 1

ε2
log 1

ε

)
, the hard-core distributionμ onU≤k

with parameterλ, defined by

λi =
xi

1 + ε
4
− xi

,

is (1 + ε)-approximate(l′, l)-wise independent.
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Thus for minimizing the generalized ratio problem
(

El′ (VSV >
S )

El(VSV >
S )

) 1
l−l′

over subsetsS ∈ [n] of size

k, we obtain

• ( el
l−l′

)-approximation algorithm whenk = l, and

• (1 + ε)-approximation algorithm whenk = Ω
(

l
ε
+ 1

ε2
log 1

ε

)
.

Proof. We first prove the result fork = l. For allT ′, T ⊆ [n] such that|T ′| = l′, |T | = l,

Pr
S∼μ

[S ⊇ T ′]

Pr
S∼μ

[S ⊇ T ]
=

∑
|S|=k,S⊇T ′ xS

∑
|S|=k,S⊇T xS

=
xT ′∑

L∈([n]\T ′

k−l′ )
xL

xT
≤

xT ′∑
L∈( [n]

k−l′)
xL

xT

We now use Maclaurin’s inequality ([LT93]) to bound the quantity on the right-hand side

∑

L∈( [n]

k−l′)

xL = el−l′(x) ≤

(
n

l − l′

)

(e1(x)/n)l−l′ ≤
nl−l′

(l − l′)!
(l/n)l−l′ =

ll−l′

(l − l′)!
(3.26)

Therefore,
Pr
S∼μ

[S ⊇ T ′]

Pr
S∼μ

[S ⊇ T ]
≤

ll−l′

(l − l′)!

xT ′

xT
(3.27)

which proves the(l′, l)-wise independent property ofμ with required approximation ratio from

(3.25).

We now prove the result fork = Ω
(

l
ε
+ 1

ε2
log 1

ε

)
. The proof follows similarly from Lemma

3.3.2 by replacingT,R with T ′, T of sizesl′, l instead of sizesd− 1, d. In particular, the equation

(3.7) becomes
Pr[S ⊇ T ′]

Pr[S ⊇ T ]
≤
(
1 +

ε

4

)l−l′ xT ′

xT Pr[
∑

i 6∈T Yi ≤ k − l]
. (3.28)

and the Chernoff’s bound (3.8) still holds by mechanically replacingd,R with l, T respectively.

The resulting approximation ratioα satisfies

αl−l′ =

(
1 + ε

4

)l−l′

1− ε
4

≤ (1 + ε)l−l′ .
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where the inequality holds becauseε ≤ 2.

Approximation Guarantee for Generalized Ratio Problem with Repetitions

We now consider the generalized ratio problemwith repetitions. The following statement is a

generalization of Lemma 3.4.1.

Theorem 3.5.10.GivenV = [v1 v2 . . . vn] wherevi ∈ Rd, a pair of integers0 ≤ l′ ≤ l ≤

d, an integerk ≥ l, and 1 ≥ ε > 0, there is anα-approximation algorithm for minimizing
(

El′ (VSV >
S )

El(VSV >
S )

) 1
l−l′

over subsetsS ⊆ [n] of sizek with repetitions for

α ≤
k(1 + ε)

k − l + 1
(3.29)

Proof. We use the algorithm similar to Algorithm 3.2 except that in step (5), we sampleS ⊆ U

of sizek wherePr[S = S] ∝ El(WSW>
S ) in place ofPr[S = S] ∝ El(WSW>

S ). The anal-

ysis follows on the same lines as in Lemma 3.4.1. In Lemma 3.4.1, it is sufficient to show that

the uniform distributionμ over subsetsS ⊆ U of sizek is k
k−d+1

-approximate(d − 1, d)-wise

independent (as in (3.10)). Here, it is sufficient to show that the same uniform distributionμ is

k
k−l+1

-approximate(l′, l)-wise independent. ForT, T ′ ⊆ [n] of sizel′, l, the calculation of
Pr
μ

[S⊇T ′]

Pr
μ

[S⊇T ]

and yT ′

yT is straightforward

Pr
μ

[S ⊇ T ′]

Pr
μ

[S ⊇ T ]
=

(
qk−l′

k−l′

)
/
(

qk
k

)

(
qk−l
k−l

)
/
(

qk
k

) ≤
(qk)l−l′(k − l)!

(k − l′)!
and

yT ′

yT
= ql−l′ (3.30)
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Therefore,μ is α-approximate(l′, l)-wise independent for

α =




Pr
μ

[S ⊇ T ′]

Pr
μ

[S ⊇ T ]
∙

yT

yT ′





1
l−l′

≤

(
(qk)l−l′(k − l)!

(k − l′)!
ql′−l

) 1
l−l′

=
k

[(k − l′)(k − l′ − 1) ∙ ∙ ∙ (k − l + 1)]
1

l−l′
≤

k

k − l + 1

as we wanted to show.

We note that thel-proportional volume sampling in the proof of Theorem 3.5.10 can be imple-

mented efficiently, and the proof is outlined in Section 3.6.5.

Integrality Gap

Finally, we state an integrality gap for minimizing generalized ratio objective
(

El′ (VSV >
S )

El(VSV >
S )

) 1
l−l′

over

subsetsS ⊆ [n] of sizek. The integrality gap matches our approximation ratio of our algorithm

with repetitions whenk is large.

Theorem 3.5.11.For any given positive integersk, d and a pair of integers0 ≤ l′ ≤ l ≤ d

with k > l′, there exists an instanceV = [v1, . . . , vn] ∈ Rd×n to the problem of minimizing
(

El′ (VSV >
S )

El(VSV >
S )

) 1
l−l′

over subsetsS ⊆ [n] of sizek such that

OPT≥

(
k

k − l′
− δ

)

∙ CP

for all δ > 0, whereOPT denotes the value of the optimal integral solution andCP denotes the

value of the convex program.

This implies that the integrality gap is at leastk
k−l′

for minimizing
(

El′ (VSV >
S )

El(VSV >
S )

) 1
l−l′

over subsets

S ⊆ [n] of sizek. The theorem applies to both with and without repetitions.

Proof. The instanceV = [v1, . . . , vn] will be the same for with and without repetitions. For each
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1 ≤ i ≤ d, let ei denote the unit vector in the direction of axisi. Choose

vi =






√
N ∙ ei for i = 1, . . . , l′

ei for i = 1, . . . , l′

whereN > 0 is a constant to be chosen later. Setvi, i > l to be at leastk copies of each of thesevi

for i ≤ l, as we can maken as big as needed. Hence, we may assume that we are allowed to pick

only vi, i ≤ l, but with repetitions.

Let S∗ represent the set of vectors in OPT andyi be the number of copies ofvi in S∗ for

1 ≤ i ≤ l. Clearlyyi ≥ 1 for all i = 1, . . . , l (else the objective is unbounded). The eigenvalues of

VS∗V >
S∗ are

λ(VS∗V >
S∗) = (y1N, y2N, . . . , yl′N, yl′+1, yl′+2, . . . , yl, 0, . . . , 0)

Hence, bothEl′(VS∗V >
S∗) = el′(λ) andEl(VS∗V >

S∗) = el(λ) are polynomials in variablesN of

degreel′.

Now let N → ∞. To compute(OPT)l−l′ =
El′ (VS∗V >

S∗ )

El(VS∗V >
S∗ )

, we only need to compute the co-

efficient of the highest degree monomialN l′ . The coefficient ofN l′ in el′(λ), el(λ) are exactly
∏l′

i=1 yi,
∏l

i=1 yi, and therefore

(OPT)l−l′ =
El′(VS∗V >

S∗)

El(VS∗V >
S∗)
→

∏l′

i=1 yi
∏l

i=1 yi

=

(
l∏

i=l′+1

yi

)−1

Observe that
∏l

i=l′+1 yi is maximized under the budget constraint
∑l

i=1 yi = |S∗| = k whenyj = 1

for j = 1, . . . , l′. Therefore,

l∏

i=l′+1

yi ≤

(
1

l − l′

l∑

i=l′+1

yi

)l−l′

=

(
k − l′

l − l′

)l−l′

where the inequality is by AM-GM. Hence, OPT is lower bounded by a quantity that converges to

51



l−l′

k−l′
asN →∞.

We now give a valid fractional solutionx to upper boundCP for eachN > 0. Choose

xi =






k√
N

for i = 1, . . . , l′

k− kl′√
N

l−l′
for i = l′ + 1, . . . , l

0 for i > l

Then, eigenvalues ofV (x)V (x)> are

λ′ := λ(V (x)V (x)>) = (x1N, x2N, . . . , xl′N, xl′+1, xl′+2, . . . , xl, 0, . . . , 0)

= (k
√

N, k
√

N, . . . , k
√

N, xl′+1, xl′+2, . . . , xl, 0, . . . , 0)

Now asN →∞, the dominating terms ofEl′(V (x)V (x)>) = el′(λ
′) is

∏l′

i=1(k
√

N) = kl′(
√

N)l′ .

Also, we have

El(V (x)V (x)>) = el(λ
′) =

l′∏

i=1

(k
√

N)
l∏

i=l′+1

xi

= kl′

(
k − kl′√

N

l − l′

)l−l′

(
√

N)l′ → kl′
(

k

l − l′

)l−l′

(
√

N)l′

Hence,

CP ≤

(
El′(V (x)V (x)>)

El(V (x)V (x)>)

)l−l′

→
l − l′

k

Therefore,OPT
CP

is lower bounded by a ratio which converges tol−l′

k−l′
∙ k

l−l′
= k

k−l′
.

3.6 Efficient Algorithms

In this section, we outline efficient sampling algorithms, as well as deterministic implementations

of our rounding algorithms, both for with and without repetition settings.
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3.6.1 EfficientRandomizedProportional Volume

Given a vectorλ ∈ Rn
+, we show that proportional volume sampling withμ(S) ∝ λS for S ∈ U ,

whereU ∈ {Uk,U≤k} can be done in time polynomial in the sizen of the ground set. We start

by stating a lemma which is very useful both for the sampling algorithms and the deterministic

implementations.

Lemma 3.6.1.Letλ ∈ Rn
+, v1, . . . , vn ∈ Rd, andV = [v1, . . . , vn]. LetI, J ⊆ [n] be disjoint. Let

1 ≤ k ≤ n, 0 ≤ d0 ≤ d. Consider the following function

F (t1, t2, t3) = det
(
In + t1diag(y) + t1t2diag(y)1/2V V >diag(y)1/2

)

wheret1, t2, t3 ∈ R are indeterminate,In is then× n identity matrix, andy ∈ Rn with

yi =






λit3, if i ∈ I

0, if i ∈ J

λi, otherwise

.

ThenF (t1, t2, t3) is a polynomial and the quantity

∑

|S|=k,I⊆S,J∩S=∅

λS
∑

|T |=d0,T⊆S

det(V >
T VT ) (3.31)

is the coefficient of the monomialtk1t
d0
2 t

|I|
3 . Moreover, this quantity can be computed inO (n3d0k|I| ∙ log(d0k|I|))

number of arithmetic operations.

Proof. Let us first fix someS ⊆ [n]. Then we have

∑

|T |=d0,T⊆S

det(V >
T VT ) = Ed0(V

>
S VS) = [td0

2 ] det(IS + t2VSV >
S ),
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where the notation[td0
2 ]p(t2) denotes the coefficient oftd0 in the polynomialp(t2) = det(IS +

t2VSV >
S ). The first equality is just Cauchy-Binet, and the second one is standard and follows from

the Leibniz formula for the determinant. Therefore, (3.31) equals

[td0
2 ]

∑

|S|=k,I⊆S,J∩S=∅

λS det(IS + t2VSV >
S ).

To complete the proof, we establish the following claim.

Claim 1. LetL be ann×n matrix, and letλ, I, J, k, y be as in the statement of the Lemma. Then,

∑

|S|=k,I⊆S,J∩S=∅

λS det(LS,S) = [t
|I|
3 ]Ek

(
diag(y)1/2L diag(y)1/2

)

= [tk1t
|I|
3 ] det

(
In + t1diag(y)1/2L diag(y)1/2

)
.

Proof. By Cauchy-Binet,

Ek

(
diag(y)1/2L diag(y)1/2

)
=
∑

|S|=k

yS det(LS,S)

=
∑

|S|=k,J∩S=∅

t
|S∩I|
3 λS det(LS,S).

The first equality follows. The second is, again, a consequence of the Leibniz formula for the

determinant.

Plugging inL = In + t2V V > in Claim 1 gives that (3.31) equals

[tk1t
d0
2 t

|I|
3 ] det

(
In + t1diag(y)1/2(In + t2V V >)diag(y)1/2

)

= [tk1t
d0
2 t

|I|
3 ] det

(
In + t1diag(y) + t1t2diag(y)1/2V V >diag(y)1/2

)
.

This completes the proof. For the running time, the standard computation time of matrix mul-
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tiplication and determinant ofn × n matrices isO(n3) entry-wise arithmetic operations. We

need to keep all monomials in the formta1t
b
2t

c
3 wherea ≤ k, b ≤ d0, c ≤ |I|, of which there

areO(d0k|I|) of those. By representing multivariate monomials in single variable ([Pan94]), we

may use Fast Fourier Transform to do one polynomial multiplication of entries of the matrix in

O (d0k|I| ∙ log(d0k|I|)) number of arithmetic operations. This gives the total running time of

O (n3d0k|I| ∙ log(d0k|I|)).

Using the above lemma, we now prove the following theorem that will directly imply Lemma 3.1.10.

Theorem 3.6.2.Let λ ∈ Rn
+, v1, . . . , vn ∈ Rd, 1 ≤ k ≤ n, U ∈ {Uk,U≤k}, andV = [v1, . . . , vn].

Then there is a randomized algorithmA which outputsS ∈ U such that

Pr
S∼A

[S = S] =
λS det(VSV >

S )
∑

S′∈U λS′ det(VS′V >
S′ )

=: μ′(S)

That is, the algorithm correctly implements proportional volume samplingμ′ with hard-core mea-

sureμ on U with parameterλ. Moreover, the algorithm runs inO (n4dk2 log(dk)) number of

arithmetic operations.

Observation 3.6.3.[WYS16] shows that we may assume that the support of an extreme fractional

solution of convex relaxation has size at mostk + d2. Thus, the runtime of proportional volume

sampling isO ((k + d2)4dk2 log(dk)). While the degrees ind, k are not small, this runtime is

independent ofn.

Observation 3.6.4. It is true in theory and observed in practice that solving the continuous re-

laxation rather than the rounding algorithm is a bottleneck in computation time, as discussed in

[ALSW17a]. In particular, solving the continuous relaxation ofA-optimal design takesO (n2+ω log n)

number of iterations by standard ellipsoid method andO ((n + d2)3.5) number of iterations by

SDP, whereO(nω) denotes the runtime ofn× n matrix multiplication. In most applications where

n >> k, these running times dominates one of proportional volume sampling.
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Proof. We can sample by starting with an empty setS = ∅. Then, in each stepi = 1, 2, . . . , n, the

algorithm decides with the correct probability

Pr
S∼μ′

[i ∈ S|I ⊆ S, J ∩ S = ∅]

whether to includei in S or not, given that we already know that we have includedI in S and

excludedJ from S from previous steps1, 2, . . . , i− 1. Let I ′ = I ∪{i}. This probability equals to

Pr
S∼μ′

[i ∈ S|I ⊆ S, J ∩ S = ∅] =

Pr
S∼μ′

[I ′ ⊆ S, J ∩ S = ∅]

Pr
S∼μ′

[I ⊆ S, J ∩ S = ∅]

=

∑
S∈U ,I′⊆S,J∩S=∅ λS det(VSV >

S )
∑

S∈U ,I⊆S,J∩S=∅ λS det(VSV >
S )

=

∑
S∈U ,I′⊆S,J∩S=∅ λS

∑
|R|=d,R⊂S det(VRV >

R )
∑

S∈U ,I⊆S,J∩S=∅ λS
∑

|R|=d,R⊂S det(VRV >
R )

where we apply the Cauchy-Binet formula in the last equality. ForU = Uk, both the numer-

ator and denominator are summations overS restricted to|S| = k, which can be computed in

O (n3dk2 log(dk)) number of arithmetic operations by Lemma 3.6.1. For the caseU = U≤k,

we can evaluate summations in the numerator and denominator restricted to|S| = k0 for each

k0 = 1, 2, . . . k by computing polynomialF (t1, t2, t3) in Lemma 3.6.1 only once, and then sum

those quantities overk0.

3.6.2 EfficientDeterministicProportional Volume

We show that for hard-core measures there is a deterministic algorithm that achieves the same

objective value as the expected objective value achieved by proportional volume sampling. The

basic idea is to use the method of conditional expectations.

Theorem 3.6.5.Let λ ∈ Rn
+, v1, . . . , vn ∈ Rd, 1 ≤ k ≤ n, U ∈ {Uk,U≤k}, andV = [v1, . . . , vn].
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Then there is a deterministic algorithmA′ which outputsS∗ ⊆ [n] of sizek such that

tr
(
VS∗V >

S∗

)−1
≥ E

μ′

[
tr
(
VSV >

S

)−1
]

whereμ′ is the probability distribution defined byμ′(S) ∝ λS det(VSV >
S ) for all S ∈ U . Moreover,

the algorithm runs inO (n4dk2 log(dk)) number of arithmetic operations.

Again, with the assumption thatn ≤ k + d2 (Observation 3.6.3), the runtime for deterministic

proportional volume sampling isO ((k + d2)4dk2 log(dk)).

Proof. To prove the theorem, we derandomize the sampling algorithm in Theorem 3.6.2 by the

method of conditional expectations. The deterministic algorithm starts withS∗ = ∅, and then

chooses, at each stepi = 1, 2, . . . , n, whether to picki to be inS∗ or not, given that we know from

previous steps to include or exclude each element1, 2, . . . , i − 1 from S∗. The main challenge is

to calculate exactly the quantity of the form

X(I, J) := E
S∼μ′

[
tr
(
VSV >

S

)−1
|I ⊂ S, J ∩ S = ∅

]

whereI, J ⊆ [n] are disjoint. If we can efficiently calculate the quantity of such form, the al-

gorithm can, at each stepi = 1, 2, . . . , n, calculateX(I ′ ∪ {i}, J ′) andX(I ′, J ′ ∪ {i}) where

I ′, J ′ ⊆ [i − 1] denote elements we have decided to pick and not to pick, respectively, and then

includei to S∗ if and only if X(I ′ ∪ {i}, J ′) ≥ X(I ′, J ′ ∪ {i}).
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Note that the quantityX(I, J) equals

E
S∼μ′

[
tr
(
VSV >

S

)−1
|I ⊂ S, J ∩ S = ∅

]
=

∑

S∈U ,
I⊆S,J∩S=∅

Pr
μ′

[S = S|I ⊆ S,S ∩ J = ∅] tr
[
(VSV >

S )−1
]

=
∑

S∈U ,
I⊆S,J∩S=∅

λS det(VSV >
S )

∑
S′∈U ,I⊆S,J∩S=∅ λS′ det(VS′V >

S′ )
tr
[
(VSV >

S )−1
]

=

∑
S∈U ,I⊆S,J∩S=∅ λSEd−1(VSV >

S )
∑

S∈U ,I⊆S,J∩S=∅ λS
∑

|R|=d,R⊂S det(VRV >
R )

=

∑
S∈U ,I⊆S,J∩S=∅ λS

∑
|T |=d−1,T⊂S det(V >

T VT )
∑

S∈U ,I⊆S,J∩S=∅ λS
∑

|R|=d,R⊂S det(VRV >
R )

where we write inverse of trace as ratio of symmetric polynomials of eigenvalues in the third

equality and use Cauchy-Binet formula for the third and the fourth equality. The rest of the proof

is now identical to the proof of Theorem 3.6.2, except with different parametersd0 = d − 1, d in

f(t1, t2, t3) when applying Lemma 3.6.1.

3.6.3 Efficient RandomizedImplementationof k/ (k − d + 1)-ApproximationAlgorithm With

Repetitions

First, we need to state several Lemmas needed to compute particular sums. The main motivation

that we need a different method from Section 3.6.1 and 3.6.2 to compute a similar sum is that we

want to allow the ground setU of indices of all copies of vectors to have an exponential size. This

makes Lemma 3.6.1 not useful, as the matrix needed to be computed has dimension|U |× |U |. The

main difference, however, is that the parameterλ is now a constant, allowing us to obtain sums by

computing a more compactd× d matrix.

Lemma 3.6.6. Let V = [v1, . . . , vm] be a matrix of vectorsvi ∈ Rd with n ≥ d distinct vec-

tors. Let F ⊆ [m] and let 0 ≤ r ≤ d and 0 ≤ d0 ≤ d be integers. Then the quantity
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∑
|T |=d0,|F∩R|=r det(V >

T VT ) is the coefficient oftd−d0
1 td0−r

2 tr3 in

f(t1, t2, t3) = det

(

t1Id +
∑

i∈F

t3viv
>
i +

∑

i/∈F

t2viv
>
i

)

(3.32)

wheret1, t2, t3 ∈ R are indeterminate andId is thed×d identity matrix. Furthermore, this quantity

can be computed inO (n(d− d0 + 1)d2
0d

2 log d) number of arithmetic operations.

Proof. First, note thatdet
(
t1I +

∑
i∈F t3viv

>
i +

∑
i/∈F t2viv

>
i

)
=
∏d

i=1(t1 + νi) whereν(M) =

{ν1, . . . , νd} is the vector of eigenvalues of the matrixM =
∑

i∈F t3viv
>
i +

∑
i/∈F t2viv

>
i . Hence,

the coefficient oftd−d0
1 in det

(
t1I +

∑
i∈F t3viv

>
i +

∑
i/∈F t2viv

>
i

)
is ed0(ν(M)).

Next, observe thatM is in the formV ′V ′> whereV ′ is the matrix where columns are
√

t3vi,

i ∈ F and
√

t2vi, i /∈ F . Applying Cauchy-Binet toEd0(V
′V ′>), we get

Ed0

(
∑

i∈F

t3viv
>
i +

∑

i/∈F

t2viv
>
i

)

= Ed0(V
′V ′>) =

∑

|T |=d0

det(V ′>
T V ′

T )

=

|F |∑

l=0

∑

|T |=d0,|T∩F |=l

det(V ′>
T V ′

T )

=

|F |∑

l=0

∑

|T |=d0,|T∩F |=l

tl3t
d0−l
2 det(V >

T VT ),

where we use Lemma 3.2.1 for the last equality. The desired quantity
∑

|T |=d0,|F∩R|=r det(V >
T VT )

is then exactly the coefficient atl = r in the sum on the right hand side.

To compute the running time, since there are onlyn distinct vectors, we may represent sets

V, F compactly with distinctvi’s and number of copies of each distinctvi’s. Therefore, com-

puting the matrix sum takesO (nd2) entry-wise operations. Next, the standard computation time

of determinant ofd × d matrix is O(d3) entry-wise arithmetic operations. This gives a total of

O (nd2 + d3) = O (nd2) entry-wise operations.

For each entry-wise operation, we keep all monomials in the formta1t
b
2t

c
3 wherea ≤ d−d0, b ≤
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d0 − r, c ≤ r, of which there areO((d − d0 + 1)d2
0). By representing multivariate monomials in

single variable ([Pan94]) of degreeO((d−d0+1)d2
0), we may use Fast Fourier Transform to do one

polynomial multiplication of entries of the matrix inO ((d− d0 + 1)d2
0 log d) number of arithmetic

operations. This gives the total runtime ofO (n(d− d0 + 1)d2
0d

2 log d) arithmeticoperations.

Lemma 3.6.7.Let V = [v1, . . . , vm] be a matrix of vectorsvi ∈ Rd with n ≥ d distinct vectors.

Let F ⊆ [m] and let0 ≤ r ≤ d and0 ≤ d0 ≤ d be integers. There is an algorithm to compute
∑

|S|=k,S⊇F Ed0(VSV >
S ) with O (n(d− d0 + 1)d2

0d
2 log d) number of arithmetic operations.

Proof. We apply Cauchy-Binet:

∑

|S|=k,S⊇F

Ed0(VSV T
S ) =

∑

|S|=k,S⊇F

∑

|T |=d0,T⊂S

det(V >
T VT )

=
∑

|T |=d0

det(V >
T VT )

(
m− |F | − d0 + |F ∩ T |
k − |F | − d0 + |F ∩ T |

)

=
d∑

r=0

(
m− |F | − d0 + r

k − |F | − d0 + r

) ∑

|T |=d0,|F∩T |=r

det(V >
T VT )

where we change the order of summations for the second equality, and enumerate over possi-

ble sizes ofF ∩ T to get the third equality. We computef(t1, t2, t3) in Lemma 3.6.6 once with

O (n(d− d0 + 1)d2
0d

2 log d) number of arithmetic operations, so we obtain values of
∑

|T |=d0,|F∩T |=r det(V >
T VT )

for all r = 0, . . . , d0. The rest is a straightforwardcalculation.

We now present an efficient sampling procedure for Algorithm 3.2. We want to sampleS

proportional todet(WSW>
S ). The setS is a subset of all copies of at mostn distinct vectors, and

there can be exponentially many copies. However, the key is that the quantityf(t1, t2, t3) in (3.32)

is still efficiently computable because exponentially many of these copies of vectors are the same.

Theorem 3.6.8.Given inputsn, d, k, ε, x ∈ Rn
+ with

∑n
i=1 xi = k, and vectorsv1, . . . , vn to

Algorithm 3.2 we defineq, U,W as in Algorithm 3.2. Then, there exists an implementationA
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that samplesS from the distributionμ′ over all subsetsS ⊆ U of sizek, whereμ′ is defined by

PrS∼μ′ [S = S] ∝ det(WSW>
S ) for eachS ⊆ U, |S| = k. Moreover,A runs inO (n2d4k log d)

number of arithmetic operations.

Theorem 3.6.8 says that steps (4)-(5) in Algorithm 3.2 can be efficiently implemented. Other

steps except (4)-(5) obviously useO (n2d4k log d) number of arithmetic operations, so the above

statement implies that Algorithm 3.2 runs inO (n2d4k log d) number of arithmetic operations.

Again, by Observation 3.6.3, the number of arithmetic operations is in factO ((k + d2)2d4k log d).

Proof. Let mi = qx′
i be the number of copies of vectorvi (recall thatq = 2n

εk
). Let wi,j denote

thejth copy of vectorvi. Write U = {(i, j) : i ∈ [n], j ∈ [mi]} be the new set of indices after the

copying procedure. DenoteS a random subset (not multiset) ofU that we want to sample. Write

W as the matrix with columnswi,j for all (i, j) ∈ U . Let Ei = {wi,j : j = 1, . . . ,mi} be the set of

copies of vectorvi. For anyA ⊆ U , we say thatA haski copies ofvi to mean that|A ∩ Ei| = ki.

We can define the sampling algorithmA by sampling, at each stept = 1, . . . , n, how many

copies ofvi are to be included inS ⊆ U . Denoteμ′ the volume sampling onW we want to sample.

The problem then reduces to efficiently computing

Pr
μ′

[S haskt copies ofvt|S haski copies ofvi, ∀i = 1, . . . , t − 1]

=

Pr
μ′

[S haski copies ofvi, ∀i = 1, . . . , t]

Pr
μ′

[S haski copies ofvi, ∀i = 1, . . . , t − 1]
(3.33)

for eachkt = 0, 1, . . . , k−
∑t−1

i=1 ki. Thus, it suffices to efficiently compute quantity (3.33) for any

given1 ≤ t ≤ n andk1, . . . , kt such that
∑t

i=1 ki ≤ k.

We now fix t, k1, . . . , kt. Note that for anyi ∈ [n], getting any set ofki copies ofvi is the

same, i.e. eventsS ∩ Ei = Fi andS ∩ Ei = F ′
i underS ∼ μ′ have the same probability for

any subsetsFi, F
′
i ⊆ Ei of the same size. Therefore, we fix one set ofki copies ofvi to be
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Fi = {wi,j : j = 1, . . . , ki} for all i ∈ [n] and obtain

Pr [S haski copies ofvi, ∀i = 1, . . . , t] =
t∏

i=1

(
mi

ki

)

Pr [S ∩ Ei = Fi, ∀i = 1, . . . t]

Therefore, (3.33) equals

∏t
i=1

(
mi

ki

)
Pr [S ∩ Ei = Fi, ∀i = 1, . . . t]

∏t−1
i=1

(
mi

ki

)
Pr [S ∩ Ei = Fi, ∀i = 1, . . . t − 1]

=

(
mt

kt

) ∑
|S|=k,S∩Ei=Fi,∀i=1,...t det(WSW>

S )
∑

|S|=k,S∩Ei=Fi,∀i=1,...t−1 det(WSW>
S )

(3.34)

To compute the numerator, defineW ′ a matrix of vectors inW restricted to indicesU\
(⋃t

i=1 Ei \ Fi

)
,

andF :=
⋃t

i=1 Fi, then we have

∑

|S|=k,S⊆W,S∩Ei=Fi,∀i=1,...t

det(WSW>
S ) =

∑

|S|=k,S⊆W ′,S⊇F

det(W ′
SW ′

S
>
) (3.35)

By Lemma 3.6.7, the number of arithmetic operations to compute (3.35) isO (n(d− d0 + 1)d2
0d

2 log d) =

O (nd4 log d) (by applyingd0 = d). Therefore, because in each stept = 1, 2, . . . , n, we compute

(3.33) at mostk times for different values ofkt, the total number of arithmetic operations for

sampling algorithmA is O (n2d4k log d).

Remark 3.6.9. Although Theorem 3.6.8 and Observation 3.6.3 imply that randomized round-

ing for A-optimal design with repetition takesO ((k + d2)2d4k log d) number of arithmetic oper-

ations, this does not take into account the size of numbers used in the computation which may

scale with inputε. It is not hard to see that the sizes of coefficientsf(t1, t2, t3) in Lemma 3.6.6,

of the number
(

m−|F |−d0+r
k−|F |−d0+r

)
in the proof of Lemma 3.6.7, and of

(
mt

kt

)
in (3.34) scale linearly

with O(k log (m)) wherem =
∑n

i=1 mi. As we applym ≤ qk = 2n
ε

in the proof of Theo-

rem 3.6.8, the runtime of randomized rounding forA-optimal design with repetition, after taking

into account the size of numbers in the computation, has an extra factor ofk log(n
ε
) and becomes
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O
(
(k + d2)2d4k2 log d log(k+d2

ε
))
)

.

3.6.4 Efficient DeterministicImplementationof k/ (k − d + 1)-ApproximationAlgorithm With

Repetitions

We show adeterministicimplementation of proportional volume sampling used for thek
k−d+1

-

approximation algorithm with repetitions. In particular, we derandomized the efficient implemen-

tation of steps (4)-(5) of Algorithm 3.2, and show that the running time of deterministic version is

the same as that of the randomized one.

Theorem 3.6.10.Given inputsn, d, k, ε, x ∈ Rn
+ with

∑n
i=1 xi = k, and vectorsv1, . . . , vn to

Algorithm 3.2, we defineq, U,W as in Algorithm 3.2. Then, there exists a deterministic algorithm

A′ that outputsS∗ ⊆ U of sizek such that

tr
(
WS∗W>

S∗

)−1
≥ E

S∼μ′

[
tr
(
WSW>

S

)−1
]

whereμ′ is a distribution over all subsetsS ⊆ U of sizek defined byμ′(S) ∝ det(WSW>
S ) for

each setS ⊆ U of sizek. Moreover,A′ runs inO (n2d4k log d) number of arithmetic operations.

Again, together with Observation 3.6.3 and Remark 3.6.9, Theorem 3.6.10 implies that the

k
k−d+1

-approximation algorithm forA-optimal design with repetitions can be implemented deter-

ministically in O ((k + d2)2d4k log d) number of arithmetic operations and, after taking into ac-

count the size of numbers in the computation, inO
(
(k + d2)2d4k2 log d log(k+d2

ε
)
)

time.

Proof. We can define the deterministic algorithmA′ by deciding, at each stept = 1, . . . , n, how

many copies ofvi are to be included inS∗ ⊆ U . The problem then reduces to efficiently computing

X(k1, . . . , kt) := E
μ′

[
tr
(
WSW>

S

)−1
|S haski copies ofvi, ∀i = 1, . . . , t − 1, t

]
(3.36)
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wherek1, . . . , kt−1 is already decided by previously steps of the algorithm, and now we compute

(3.36) for eachkt = 0, 1, . . . , k−
∑t−1

i=1 ki. A′ then chooses value ofkt which maximizes (3.36) to

complete stept.

Recall the definitions from proof of Theorem 3.6.8 thatFi, Ei are the sets of fixedki copies

and all copies ofvi, respectively,W ′ is the matrix of vectors inW restricted to indicesU \
(⋃t

i=1 Ei \ Fi

)
, andF :=

⋃t
i=1 Fi. Consider that

X(k1, . . . , kt) =
∑

S⊆U ;|S|=k;
|S∩Ei|=ki,∀i=1,...,t

Pr
μ′

[S = S|S haski copies ofvi, ∀i = 1, . . . , t] tr
[
(WSW>

S )−1
]

=
∑

S⊆U ;|S|=k;
|S∩Ei|=ki,∀i=1,...,t

det(WSW>
S )

∑
S′⊆U ;|S′|=k;|S′∩Ei|=ki,∀i=1,...,t det(WS′W>

S′)
tr
[
(WSW>

S )−1
]

=

∑
S⊆U ;|S|=k;|S∩Ei|=ki,∀i=1,...,t Ed−1(WSW>

S )
∑

S⊆U ;|S|=k;|S∩Ei|=ki,∀i=1,...,t det(WSW>
S )

=

∏t
i=1

(
mi

ki

)∑
S⊆U ;|S|=k;S⊇F Ed−1(W

′
SW ′

S
>)

∏t
i=1

(
mi

ki

)∑
S⊆U ;|S|=k;S⊇F det(W ′

SW ′
S
>)

=

∑
S⊆U ;|S|=k;S⊇F Ed−1(W

′
SW ′

S
>)

∑
S⊆U ;|S|=k;S⊇F det(W ′

SW ′
S
>)

By Lemma 3.6.7, we can compute the numerator and denominator inO (n(d− d0 + 1)d2
0d

2 log d) =

O (nd4 log d) (by applyingd0 = d − 1, d) number of arithmetic operations. Therefore, because in

each stept = 1, 2, . . . , n, we compute (3.36) at mostk times for different values ofkt, the total

number of arithmetic operations for sampling algorithmA is O (n2d4k log d).

3.6.5 Efficient Implementationsfor theGeneralizedRatio Objective

In Section 3.6.1-3.6.2 we obtain efficient randomized and deterministic implementations of pro-

portional volume sampling with measureμ whenμ is a hard-core distribution over all subsets

S ∈ U (whereU ∈ {Uk,U≤k}) with any given parameterλ ∈ Rn
+. Both implementations run in
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O (n4dk2 log(dk)) number of arithmetic operations. In Section 3.6.3-3.6.4, we obtain efficient ran-

domized and deterministic implementations of proportional volume sampling over exponentially-

sized matrixW = [wi,j ] of m vectors containingn distinct vectors inO (n2d4k log d) number of

arithmetic operations. In this section, we show that the results from Section 3.6.1-3.6.4 generalize

to proportionall-volume sampling for generalized ratio problem.

Theorem 3.6.11.Let n, d, k be positive integers,λ ∈ Rn
+, U ∈ {Uk,U≤k}, V = [v1, . . . , vn] ∈

Rd×n, and0 ≤ l′ < l ≤ d be a pair of integers. Letμ′ be thel-proportional volume sampling

distribution overU with hard-core measureμ of parameterλ, i.e. μ′(S) ∝ λSEl

(
VSV >

S

)
for all

S ∈ U . There are

• an implementation to sample fromμ′ that runs inO (n4lk2 log(lk)) number of arithmetic

operations, and

• a deterministic algorithm that outputs a setS∗ ∈ U of sizek such that

(
El′(VS∗V >

S∗)

El(VS∗V >
S∗)

) 1
l−l′

≥ E
S∼μ′

[(
El′(VSV >

S )

El(VSV >
S )

) 1
l−l′
]

(3.37)

that runs inO (n4lk2 log(lk)) number of arithmetic operations.

Moreover, letW = [wi,j ] be a matrix ofm vectors wherewi,j = vi for all i ∈ [n] andj. DenoteU

the index set ofW . Letμ′ be thel-proportional volume sampling over all subsetsS ⊆ U of sizek

with measureμ that is uniform, i.e.μ′(S) ∝ El

(
WSW>

S

)
for all S ⊆ U, |S| = k. There are

• an implementation to sample fromμ′ that runs inO (n2(d− l + 1)l2d2k log d) number of

arithmetic operations, and

• a deterministic algorithm that outputs a setS∗ ∈ U of sizek such that

(
El′(WS∗W>

S∗)

El(WS∗W>
S∗)

) 1
l−l′

≥ E
S∼μ′

[(
El′(WSW>

S )

El(WSW>
S )

) 1
l−l′
]

(3.38)
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that runs inO (n2 ((d− l′ + 1)l′2 + (d− l + 1)l2) d2k log d) number of arithmetic opera-

tions.

As in Observation 3.6.3, note that we can replacen = k + d2 in all running times in Theorem

3.6.11 so that running times of all variants of proportional volume sampling are independent ofn.

We also note, as in Remark 3.6.9, that running times ofl-proportional volume sampling overm

vectors withn distinct vectors has an extra factor ofk log m after taking into account the size of

numbers in computation, allowing us to do sampling over exponential-sized ground set[m].

Proof. By the convexity off(z) = zl−l′ over positive realsz, we haveE [X] ≥
(
E
[
X

1
l−l′

])l−l′

for a nonnegative random variableX. Therefore, to show (3.37), it is sufficient to show that

El′(VS∗V >
S∗)

El(VS∗V >
S∗)
≥ E

S∼μ′

[
El′(VSV >

S )

El(VSV >
S )

]

(3.39)

That is, it is enough to derandomized with respect to the objectiveEl′ (VSV >
S )

El(VSV >
S )

, and the same is true

for showing (3.38). Hence, we choose to calculate the conditional expectations with respect to this

objective.

We follow the exact same calculation forl-proportional volume sampling for generalized ratio

objective as original proofs of efficient implementations of all four algorithms inA-optimal objec-

tive. We observe that those proofs inA-optimal objective ultimately rely on the ability to, given

disjoint I, J ⊆ [n] (or in the other case,[m]), efficiently compute

∑

S∈U ,I⊆S,J∩S=φ

λS
∑

|R|=d,R⊆S

det(VRV >
R ) and

∑

S∈U ,I⊆S,J∩S=φ

λS
∑

|T |=d−1,T⊆S

det(V >
T VT )

(or in the other case, replaceV with W andλS = 1 for all S). The proofs for generalized ratio

objective follow the same line as those proofs of four algorithms, except that we instead need to
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efficiently compute

∑

S∈U ,I⊆S,J∩S=φ

λS
∑

|T |=l,R⊆S

det(V >
T VT ) and

∑

S∈U ,I⊆S,J∩S=φ

λS
∑

|T ′|=l′,T ′⊆S

det(V >
T ′VT ′)

(note the change ofR, T of sized, d − 1 to T, T ′ of sizel, l′ respectively). But the computations

can indeed be done efficiently by using differentd0 = l′, l instead ofd0 = d− 1, d when applying

Lemmas 3.6.1, 3.6.6, and 3.6.7 in the proofs and then following a similar calculation. The proofs

for running times areidentical.

3.7 Integrality Gaps

3.7.1 Integrality Gapfor E-Optimality

Here we consider another objective for optimal design of experiments, theE-optimal design objec-

tive, and show that our results in the asymptotic regime do not extend to it. Once again, the input

is a set of vectorsv1, . . . , vn ∈ Rd, and our goal is to select a setS ⊆ [n] of sizek, but this time we

minimize the objective
∥
∥(
∑

i∈S viv
>
i )−1

∥
∥, where‖ ∙ ‖ is the operator norm, i.e. the largest singu-

lar value. By taking the inverse of the objective, this is equivalent to maximizingλ1(
∑

i∈S viv
>
i ),

whereλi(M) denotes theith smallest eigenvalue ofM . This problem also has a natural convex

relaxation, analogous to the one we use for theA objective:

max λ1

(
n∑

i=1

xiviv
>
i

)

(3.40)

s.t.
n∑

i=1

xi = k (3.41)

0 ≤ xi ≤ 1 ∀i ∈ [n] (3.42)

We prove the following integrality gap result for (3.40)–(3.42).
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Theorem 3.7.1.There exists a constantc > 0 such that the following holds. For any small enough

ε > 0, and all integersd ≥ d0(ε), if k < cd
ε2

, then there exists an instancev1, . . . vn ∈ Rd of the

E-optimal design problem, for which the valueCP of (3.40)–(3.42)satisfies

CP > (1 + ε)OPT= (1 + ε) max
S⊆[n]:|S|=k

λ1

(
∑

i∈S

viv
>
i

)

Recall that for theA-objective we achieve a(1 + ε)-approximation fork = Ω(d
ε

+ log(1/ε)
ε2

).

Theorem 3.7.1 shows that such a result is impossible for theE-objective, for which the results

in [ALSW17b] cannot be improved.

Our integrality gap instance comes from a natural connection to spectral graph theory. Let us

first describe the instance for any givend. We first definen =
(

d+1
2

)
vectors inRd+1, one for each

unordered pair(i, j) ∈
(
[d+1]

2

)
. The vector corresponding to(i, j), i < j, is uij and has value1

in the i-th coordinate,−1 in the j-th coordinate, and0 everywhere else. In other words, theuij

vectors are the columns of the vertex by edge incidence matrixU of the complete graphKd+1, and

UU> = (d + 1)Id+1 − Jd+1 is the (unnormalized) Laplacian ofKd+1. (We useIm for them×m

identity matrix, andJm for them ×m all-ones matrix.) All theuij are orthogonal to the all-ones

vector1; we define our instance by writinguij in an orthonormal basis of this subspace: pick any

orthonormal basisb1, . . . , bd of the subspace ofRd+1 orthogonal to1, and definevij = B>uij for

B = (bi)
d
i=1. Thus

M =
d+1∑

i=1

d+1∑

j=i+1

vijv
>
ij = (d + 1)Id.

We consider the fractional solutionx = k

(d+1
2 )

1, i.e. each coordinate ofx is k/
(

d+1
2

)
. ThenM(x) =

∑d+1
i=1

∑d+1
j=i+1 xijvijv

>
ij = 2k

d
Id, and the objective value of the solution is2k

d
.

Consider now any integral solutionS ⊆
(
[d+1]

2

)
of the E-optimal design problem. We can

treatS as the edges of a graphG = ([d + 1], S), and the LaplacianLG of this graph isLG =
∑

(i,j)∈S uiju
>
ij. If the objective value ofS is at most(1 + ε)CP, then the smallest eigenvalue of
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M(S) =
∑

(i,j)∈S vijv
>
ij is at least 2k

d(1+ε)
≥ (1− ε)2k

d
. SinceM(S) = B>LGB, this means that the

second smallest eigenvalue ofLG is at least(1 − ε)2k
d

. The average degreeΔ of G is 2k
d+1

. So, we

have a graphG ond + 1 vertices with average degreeΔ for which the second smallest eigenvalue

of its Laplacian is at least(1− ε)(1− 1
d+1

)Δ ≥ (1− 2ε)Δ, where the inequality holds ford large

enough. The classical Alon-Boppana bound ([Alo86, Nil91]) shows that, up to lower order terms,

the second smallest eigenvalue of the Laplacian of aΔ-regular graph is at mostΔ − 2
√

Δ. If our

graphG were regular, this would imply that2k
d+1

= Δ ≥ 1
ε2

. In order to prove Theorem 3.7.1, we

extend the Alon-Boppana bound to not necessarily regular graphs, but with worse constants. There

is an extensive body of work on extending the Alon-Boppana bound to non-regular graphs: see the

recent preprint [ST17] for an overview of prior work on this subject. However, most of the work

focuses either on the normalized Laplacian or the adjacency matrix ofG, and we were unable to

find the statement below in the literature.

Theorem 3.7.2.Let G = (V,E) be a graph with average degreeΔ = 2|E|
|V | , and letLG be its

unnormalized Laplacian matrix. Then, as long asΔ is large enough, and|V | is large enough with

respect toΔ,

λ2(LG) ≤ Δ− c
√

Δ,

whereλ2(LG) is the second smallest eigenvalue ofLG, andc > 0 is an absolute constant.

Proof. By the variational characterization of eigenvalues, we need to find a unit vectorx, orthogo-

nal to1, such thatx>LGx ≤ Δ− c
√

Δ. Our goal is to use a vectorx similar to the one used in the

lower bound on the number of edges of a spectral sparsifier in [BSS12b]. However, to apply this

strategy we need to make sure thatG has a low degree vertex most of whose neighbors have low

degree. This requires most of the work in the proof.

So that we don’t have to worry about making our “test vector” orthogonal to1, observe that

λ2(LG) = min
x∈RV

x>LGx

x>x− (1>x)2/|V |
. (3.43)
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Indeed, the denominator equalsy>y for the projectiony of x orthogonal to1, and the numerator

is equal toy>LGy. Here, and in the remainder of the proof, we work inRV , the space of|V |-

dimensional real vectors indexed byV , and think ofLG as being indexed byV as well.

Observe that ifG has a vertexu of degreeΔ(u) at mostΔ− 1
10

√
Δ, we are done. In that case

we can pickx ∈ RV such thatxu = 1 andxv = 0 for all v 6= u. Then

x>LGx

x>x− (1>x)2/n
=

∑
(u,v)∈E (xu − xv)

2

1− 1
|V |

≤
Δ− 1

10

√
Δ

1− 1
|V |

,

which, by (3.43), implies the theorem for all large enough|V |. Therefore, for the rest of the proof

we will assume thatΔ(u) ≥ Δ− 1
10

√
Δ for all u ∈ V .

DefineT = {u ∈ V : Δ(u) ≥ Δ + 1
2

√
Δ} to be the set of large degree vertices, and let

S = V \ T . Observe that

|V |Δ ≥ |T |
(
Δ +

1

2

√
Δ
)

+ |S|
(
δ −

1

10

√
Δ
)

= |V |Δ +
(1
2
|T | −

1

10
|S|
)√

Δ.

Therefore,|S| ≥ 5|T |, and, sinceT andS partitionV , we have|S| ≥ 5
6
|V |.

Define

α = min

{
|{v ∼ u : v ∈ T}|

Δ− 1
10

√
Δ

: u ∈ S

}

,

wherev ∼ u means thatv is a neighbor ofu. We need to find a vertex inS such that only a small

fraction of its neighbors are inT , i.e. we need an upper bound onα. To show such an upper bound,

let us defineE(S, T ) to be the set of edges betweenS andT ; then

1

2
Δ|V | = |E| ≥ |E(S, T )| ≥ |S|α

(

Δ−
1

10

√
Δ

)

≥
5

6
|V |αΔ

(

1−
1

10
√

Δ

)

.

Therefore,α ≤ 3
5

(
1− 1

10
√

Δ

)−1
.
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Let u ∈ S be a vertex with at mostαΔ− α
10

√
Δ neighbors inT , and letδ = |{v ∼ u : v ∈ S}|.

By the choice ofu,

δ ≥ Δ(u)− αΔ +
α

10

√
Δ ≥ (1− α)Δ

(

1−
1

10
√

Δ

)

.

Assume thatΔ is large enough so that

(

1− 1
10

√
Δ

)

≥ 16
25

. Then,δ ≥ 16
25

(1− α)Δ.

We are now ready to define our test vectorx and complete the proof. Letxu = 1, xv = 1√
δ

for

any neighborv of u which is inS, andxw = 0 for anyw which is inT or is not a neighbor ofu.

We calculate

x>LGx = |{v ∼ u : v ∈ S}|

(

1−
1
√

δ

)2

+ |{v ∼ u : v ∈ T}|+
∑

v∼u,v∈S

∑

w∼v,w 6=u

1

δ

≤ δ

(

1−
1
√

δ

)2

+ Δ(u)− δ + Δ +
1

2

√
Δ− 1,

where we used the fact for anyv ∈ S, Δ(v) ≤ Δ + 1
2

√
Δ by definition ofS. The right hand side

simplifies to

Δ(u)− 2
√

δ + Δ +
1

2

√
Δ ≤ 2Δ−

(
8

5

√
(1− α)−

1

2

)√
Δ.

Sinceα ≤ 3
5

(
1− 1

10
√

Δ

)−1
, 8

5

√
(1− α)− 1

2
≥ 1

2
for all large enoughΔ, and by (3.43), we have

λ2(G) ≤
x>LGx

x>x− (1>x)2
≤

2Δ− 1
2

√
Δ

2
(
1− 1+

√
Δ

2|V |

) =

(

Δ−
1

4

√
Δ

)(

1−
1 +
√

Δ

2|V |

)−1

.

The theorem now follows as long as|V | ≥ CΔ for a sufficiently large constantC.

To finish the proof of Theorem 3.7.1, recall that the existence of a(1+ ε)-approximate solution

S to our instance implies that, for all large enoughd, the graphG = ([d + 1], S) with average

degreeΔ = 2k
d+1

satisfiesλ2(LG) ≥ (1− 2ε)Δ. By Theorem 3.7.2,λ2(LG) ≤ Δ− c
√

Δ for large
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enoughd with respect toΔ. We haveΔ ≥ c2

4ε2
, and re-arranging the terms proves the theorem.

Note that the proof of Theorem 3.7.2 does not require the graphG to be simple, i.e. parallel

edges are allowed. This means that the integrality gap in Theorem 3.7.1 holds for theE-optimal

design problem with repetitions as well.

3.7.2 Integrality Gapfor A-optimality

Theorem 3.7.3.There exists an instance of the A-optimal designv1, . . . , vn such that

OPT≥ (
k

k − d + 1
− δ)CP

for anyδ > 0.

This implies that the gap is at leastk
k−d+1

. The theorem statement applies to both with and

without repetitions.

Proof. The examplev1, . . . , vn will be the same for the problem either with or without repetitions.

Pick vi to be paralleled to axisi for each1 ≤ i ≤ d. We will set the restvi, i > d to be at leastk

copies of each of thesevi for i ≤ d, as we can pickn as big as needed. Hence, we may assume

that we are allowed to pick onlyvi, i ≤ d, but with repetition.

Choosevi = N ∙ ei for eachi = 1, . . . , d − 1, andvd = ed. As N →∞, the fractional optimal

solution (can be calculated by Lagrange’s multiplier technique) isy∗ = (δ0, δ0, . . . , δ0, k − (d −

1)δ0) for a very smallδ0 = k√
N+d−1

. The optimal integral solution isx∗ = (1, 1, . . . , 1, k− d + 1).

We haveCP = d−1
δ0N

+ 1
k−(d−1)δ0

→ 1
k
, and OPT= d−1

N
+ 1

k−d+1
→ 1

k−d+1
. Hence,

OPT
CP
→

k

k − d + 1
.
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3.8 Hardness of Approximation

In this section we show that theA-optimal design problem isNP-hard to approximate within a

fixed constant whenk = d. To the best of our knowledge, no hardness results for this problem

were previously known. Our reduction is inspired by the hardness of approximation forD-optimal

design proved in [SEFM15]. The hard problem we reduce from is an approximation version of

Partition into Triangles.

Before we prove our main hardness result, Theorem 3.1.8, we describe the class of instances we

consider, and prove some basic properties. Given a graphG = ([d], E), we define a vectorve for

each edgee = (i, j) so that itsi-th andj-th coordinates are equal to1, and all its other coordinates

are equal to0. Then the matrixV = (ve)e∈E is the undirected vertex by edge incidence matrix of

G. The main technical lemma needed for our reduction follows.

Lemma 3.8.1.LetV be the vertex by edge incidence matrix of a graphG = ([d], E), as described

above. LetS ⊆ E be a set ofd edges ofG so that the submatrixVS is invertible. Then each

connected component of the subgraphH = ([d], S) is the disjoint union of a spanning tree and an

edge. Moreover, ift of the connected components ofH are triangles, then

• for t = d
3
, tr((VSV >

S )−1) = 3d
4

;

• for anyt, tr((VSV >
S )−1) ≥ d− 3t

4
.

Proof. Let H1, . . . , Hc be the connected components ofH. First we claim that the invertibility

of VS implies that none of theH` is bipartite. Indeed, if someH` were bipartite, with bipartition

L ∪ R, then the nonzero vectorx defined by

xi =






1 i ∈ L

−1 i ∈ R

0 otherwise,
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is in the kernel ofVS. In particular, eachH` must have at least as many edges as vertices. Because

the number of edges ofH equals the number of vertices, it follows thateveryconnected component

H` must have exactly as many edges as vertices, too. In particular, this means that everyH` is the

disjoint union of a spanning tree and an edge, and the edge creates an odd-length cycle.

Let us explicitly describe the inverseV −1
S . For eache ∈ S we need to give a vectorue ∈ Rd so

thatu>
e ve = 1 andu>

e vf = 0 for everyf ∈ S, f 6= e. ThenU> = V −1
S , whereU = (ue)e∈S is the

matrix whose columns are theue vectors. LetH` be, as above, one of the connected components of

H. We will define the vectorsue for all edgese in H`; the vectors for edges in the other connected

components are defined analogously. LetC` be the unique cycle ofH`. Recall thatC` must be an

odd cycle. For anye = (i, j) in C`, we set thei-th and thej-th coordinate ofue to 1
2
. Let T be the

spanning tree ofH` derived from removing the edgee. We set the coordinates ofue corresponding

to vertices ofH` other thani and j to either−1
2

or +1
2
, so that the vertices of any edge ofT

receive values with opposite signs. This can be done by setting the coordinate ofue corresponding

to vertexk in H` to 1
2
(−1)δT (i,k), whereδT (i, k) is the distance inT betweeni andk. Because

C` is an odd cycle,δT (i, j) is even, and this assignment is consistent with the values we already

determined fori andj. Finally, the coordinates ofue which do not correspond to vertices ofH`

are set to0. See Figure 3.1 for an example. It is easy to verify thatu>
e ve = 1 andu>

e vf = 0 for

any edgef 6= e. Notice that‖ue‖22 = d`

4
, whered` is the number of vertices (and also the number

of edges) ofH`.

e

1
2

1
2

1
2

-12

-12

1
2

-12

1
2

-12 -
1
2

Figure 3.1: The values of the coordinates ofue for e ∈ C`.

It remains to describeue whene = (i, j) 6∈ C`. LetT be the tree derived fromH` by contracting
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C` to a vertexr, and setr as the root ofT . Without loss of generality, assume thatj is the endpoint

of e which is further fromr in T . We set thej-th coordinate ofue equal to1. We set the coordinates

of ue corresponding to vertices in the subtree ofT below j to either−1 or +1 so that the signs

alternate down each path fromj to a leaf ofT below j. This can be achieved by setting the

coordinate ofue corresponding to vertexk to (−1)δT (j,k), whereδT (j, k) is the distance betweenj

andk in T . All other coordinates ofue are set equal to0. See Figure 3.2 for an example. Notice

that‖ue‖22 ≥ 1 (and in fact equals the number of nodes in the subtree ofT below the nodej).

e

0

0

00

0
1

-1

1

-1 -1

Figure 3.2: The values of the coordinates ofue for e 6∈ C`.

We are now ready to finish the proof. Clearly if[d] can be partitioned intot = d
3

disjoint

triangles, and the union of their edges isS, then

tr((VSV >
S )−1) = tr(UU>) =

∑

e∈S

‖ue‖
2
2 =

3|S|
4

=
3d

4
.

In the general case, we have

tr((VSV >
S )−1) = tr(UU>) =

∑

e∈S

‖ue‖
2
2

≥
c∑

`=1

|C`| ∙ d`

4
+ d` − |C`|

≥
9t

4
+ d− 3t = d−

3t

4
,

where|C`| is the length ofC`, andd` is the number of edges (and also the number of vertices)

in H`. The final inequality follows because any connected componentH` which is not a triangle
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contributes at leastd` to thesum.

Recall that in the Partition into Triangles problem we are given a graphG = (W,E), and need

to decide ifW can be partitioned into|W |
3

vertex-disjoint triangles. This problem isNP-complete

([GJ79] present a proof in Chapter 3 and cite personal communication with Schaeffer), and this,

together with Lemma 3.8.1, suffice to show that theA-optimal design problem isNP-hard when

k = d. To prove hardness of approximation, we prove hardness of a gap version of Partition into

Triangles. In fact, we just observe that the reduction from 3-Dimensional Matching to Partition

into Triangles in [GJ79] and known hardness of approximation of 3-Dimensional Matching give

the result we need.

Lemma 3.8.2.Given a graphG = (W,E), it is NP-hard to distinguish the two cases:

1. W can be partitioned into|W |
3

vertex-disjoint triangles;

2. every set of vertex-disjoint triangles inG has cardinality at mostα |W |
3

,

whereα ∈ (0, 1) is an absolute constant.

To prove Lemma 3.8.2 we use a theorem of Petrank.

Theorem 3.8.3([Pet94]). Given a collection of triplesF ⊆ X × Y × Z, whereX, Y , andZ are

three disjoint sets of sizem each, and each element ofX ∪ Y ∪ Z appears in at most3 triples of

F , it is NP-hard to distinguish the two cases

1. there is a set of disjoint triplesM ⊆ F of cardinalitym;

2. every set of disjoint triplesM ⊆ F has cardinality at mostβm,

whereβ ∈ (0, 1) is an absolute constant.

We note that Petrank gives a slightly different version of the problem, in which the setM is

allowed to have intersecting triples, and the goal is to maximize the number of elementsX∪Y ∪Z

76



that are covered exactly once. Petrank shows that it is hard to distinguish between the cases when

every element is covered exactly once, and the case when at most3βm elements are covered

exactly once. It is immediate that this also implies Theorem 3.8.3.

Proof of Lemma 3.8.2: We will show that the reduction in [GJ79] from 3-Dimensional Matching

to Partition into Triangles is approximation preserving. This follows in a straightforward way from

the argument in [GJ79], but we repeat the reduction and its analysis for the sake of completeness.

GivenF ⊆ X∪Y ∪Z such that each element ofX∪Y ∪Z appears in at most3 tripes ofF , we

construct a graphG = (W,E) on the verticesX ∪ Y ∪Z and9|F | additional vertices:af1, . . . af9

for eachf ∈ F . For each triplef ∈ F , we include inE the edgesEf shown in Figure 3.3. Note

that the subgraphs spanned by the setsEf , Eg for two different triplesf andg are edge-disjoint,

and the only vertices they share are inX ∪ Y ∪ Z.

x y z

af1 af2

af3

af4
af5

af6

af7 af8

af9

Figure 3.3: The subgraph with edgesEf for the triplef = {x, y, z}. (Adapted from [GJ79])

First we show that ifF has a matchingM covering all elements ofX ∪ Y ∪ Z, thenG can

be partitioned into vertex-disjoint triangles. Indeed, for eachf = {x, y, z} ∈ M we can take the

triangles{x, af1, af2}, {y, af4, af5}, {z, af7, af8}, and{af3, af6, af9}. For eachf 6∈ M we can

take the triangles{af1, af2, af3}, {af4, af5, af6}, and{af7, af8, af9}.

In the other direction, assume there exists a setT of at leastα |W |
3

vertex disjoint triangles inG,

for a value ofα to be chosen shortly. We need to show thatF contains a matching of at leastβm

triples. To this end, we construct a setM which contains all triplesf , for eachEf which contains
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at least4 triangles ofT . Notice that the only way to pick three vertex disjoint triangles fromEf is

to include the lower three triangles (see Figure), so any two triplesf andg in M must be disjoint.

The cardinality ofT is at most4|M |+ 3(|F | − |M |) = |M |+ 3|F |. Therefore,

|M |+ 3|F | ≥ α
|W |
3

= α(m + 3|F |),

and we have|M | ≥ αm − (1 − α)3|F | ≥ (10α − 9)m, where we used the fact that|F | ≤ 3m

because each element ofX appears in at most3 triples ofF . Then, ifα ≥ 9+β
10

we have|M | ≥ βm.

This finishes the proof of the lemma. �

We now have everything in place to finish the proof of our main hardness result.

Proof of Theorem 3.1.8: We use a reduction from (the gap version of) Partition into Triangles

to theA-optimal design problem. In fact the reduction was already described in the beginning of

the section: given a graphG = ([d], E), it outputs the columnsve of the vertex by edge incidence

matrixV of G.

Consider the case in which the vertices ofG can be partitioned into vertex-disjoint triangles.

Let S be the union of the edges of the triangles. Then, by Lemma 3.8.1,tr((VSV >
S )−1) = 3d

4
.

Next, consider the case in which every set of vertex-disjoint triangles inG has cardinality at

mostαd
3
. Let S be any set ofd edges inE such thatVS is invertible. The subgraphH = ([d], S)

of G can have at mostαd
3

connected components that are triangles, because any two triangles

in distinct connected components are necessarily vertex-disjoint. Therefore, by Lemma 3.8.1,

tr((VSV >
S )−1) ≥ (4−α)d

4
.

It follows that ac-approximation algorithm for theA-optimal design problem, for anyc < 4−α
3

,

can be used to distinguish between the two cases of Lemma 3.8.2, and, therefore, theA-optimal

design problem isNP-hard toc-approximate. �
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3.9 Regularized Proportional Volume Sampling for Ridge Regression

In this section, we consider the problem of optimal design with a regularizer calledridge regres-

sion, and extend the sampling algorithms forA-optimal design to ridge regression. We first start

with the background and motivation of ridge regression.

3.9.1 Background

Notations

We recall notations used throughout this thesis. LetV = [v1 . . . vn] be thed-by-n matrix of vectors

vi ∈ Rd. Thesevi’s are also called datapoints. We want to select a subsetS ⊆ [n] of sizek so that

learning the model with label onS is as efficient as possible. LetVS = [vi]i∈S be a matrix with

columnsvi, i ∈ S. Let y be the label column vector, andyS is thek× 1 column vector(yi)i∈S. We

denoteX as the datapoints we want to predict, which is most cases is the same asV .

Linear Model Assumption

In optimal design throughout the thesis, we assume thatyi = x>
i w∗ + ηi whereηi are independent

Gaussian noise with mean zero and same variance. In this section, we note that we may also

assumeη is a random Gaussian vectorN (0, Cov (η)) with Cov (η) � σ2I. Under this assumption,

the errors to be presented in this section is upper bounded by in the setting whereη ∼ N (0, σ2I).

Hence, for simplicity we assumeη ∼ N (0, σ2I) as earlier.

After obtaining labelsyS, we are interested in fitting linear modelŵS by minimizing square

loss with a regularizer with parameterλ:

ŵS = argmin
w∈Rd

{
‖yS − V >

S w‖22 + λ‖w‖22
}

(3.44)

This problem is calledridge regression, and whenλ = 0, the problem reverts to linear regression.
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Table 3.4: Distributions of model and prediction errors in ridge regression

Errors ŵS − w∗ X> (ŵS − w∗)

λ = 0 = N
(
0, σ2

(
VSV >

S

)−1
)

= N
(
0, σ2X>

(
VSV >

S

)−1
X
)

λ ≥ 0
= N(−λZS(λ)−1w∗,

σ2 [ZS(λ)−1 − λZS(λ)−2])
= N(−λX>ZS(λ)−1w∗,

σ2X> [ZS(λ)−1 − λZS(λ)−2] X)

It is also known that the above ridge regression is equivalent to linear regression under Gaussian

prior assumption. Ridge regression withλ > 0 increases the stability the linear regression against

the outliar, and forces the optimization problem to have unique solution even when datapoints in

V do not span full-rankd.

Model Error and Prediction Error

In order to motivate a good objective for subset selection problem, we calculate the model error

ŵS − w∗ and prediction errorX> (ŵS − w∗) when the predictor is used to predict datapointsX.

In many applications, the matric of error concernsX to be the same asV . These errors are random

with distributions summarized in Table 3.4.

The calculations used to obtain distribution in Table 3.4 is similar in each of four cases. Here

we will compute only one example,X> (ŵS − w∗). This example is the most complicated one of

the four, and enough to guide the reader to obtain other three.

DenoteZS(λ) :=
(
VSV >

S + λI
)
. We first state a simple claim that will help in this calculation.

Claim 2. For a fixed matrixA and a random vectorZ, we haveCov (AZ) = A Cov (Z) A>.
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Proof. Denotem = E[Z], the mean vector ofZ. Then, the mean ofAZ is Am. We now have

Cov (AZ) = E
[
(AZ − Am)(AZ − Am)>

]

= E
[
A(Z −m)(Z −m)>A>

]

= AE
[
(Z −m)(Z −m)>

]
A>

= A Cov (Z) A>

We now show how to obtain the distribution ofX> (ŵS − w∗).

Claim 3. We have

X> (ŵS − w∗) = N(−λX>ZS(λ)−1w∗, σ2X>
[
ZS(λ)−1 − λZS(λ)−2

]
X)

Proof. We split calculations into the following steps.

1. Find closed-form solution of̂wS by taking the gradient:

ŵS = ZS(λ)−1VSyS (3.45)

2. Substitutingyi from the linear model assumption. This finishes obtaining the distribution of

model error.

ŵS − w∗ = ZS(λ)−1VSyS − w∗

= ZS(λ)−1VS

(
V >

S w∗ + ηS

)
− w∗

= ZS(λ)−1 [ZS(λ)w∗ − (λI)w∗ + VSηS]− w∗

= −λZS(λ)−1w∗ + ZS(λ)−1VSηS
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Table 3.5: Expected square loss of model and prediction errors in ridge regression

Errors E
ηS

[‖ŵS − w∗‖22] E
ηS

[
‖X> (ŵS − w∗)‖22

]

λ = 0 = σ2 tr VSV >
S

−1
= σ2 tr X>

(
VSV >

S

)−1
X

λ ≥ 0
= σ2 tr ZS(λ)−1

−λ
〈
ZS(λ)−2, σ2I − λw∗w∗>

〉
= σ2 tr X>ZS(λ)−1X

−λ
〈
ZS(λ)−1XX>ZS(λ)−1, σ2I − λw∗w∗>

〉

3. To obtain prediction error, we simply left multiply by the data matrix:

X> (ŵS − w∗) = −λX>ZS(λ)−1w∗ + X>ZS(λ)−1VSηS

4. Linear transformation of random Gaussian vectors is Gaussian, so we use the claim above to

get that the mean of prediction error is

μX>(ŵS−w∗) = −λX>ZS(λ)−1w∗ (3.46)

and the covariance is

Cov
(
X> (ŵS − w∗)

)
= X>ZS(λ)−1VS Cov (ηS)

(
X>ZS(λ)−1VS

)>

= X>ZS(λ)−1VS Cov (ηS) V >
S ZS(λ)−1X

� σ2X>ZS(λ)−1VSV >
S ZS(λ)−1X

= σ2X>
[
ZS(λ)−1 − λZS(λ)−2

]
X
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Expected Square Loss of Ridge Regression Predictor

There are several metric to minimize the error distribution. One common metric is expected square

loss under the distribution. We can find this expectation as follow(s). First, we calculate expected

square-loss of model error:

E
η

[
‖ŵS − w∗‖22

]
=

d∑

i=1

E
η

[
((ŵS)i − (w∗)i)

2]

=
d∑

i=1

(

E
η

[(ŵS)i − (w∗)i]
2 + Var ((ŵS)i − (w∗)i)

)

= ‖E
η

[ŵS − w∗]‖22 + tr Cov (ŵS − w∗)

where we useE [X2] = E [X]2 +Var (X) (bias-variance decomposition). Similarly, for prediction

error,

E
η

[
‖X> (ŵS − w∗)‖22

]
=

d∑

i=1

E
η

[
‖(X> (ŵS)i − (w∗)i)‖

2
2

]

=
d∑

i=1

(

E
η

[
X> ((ŵS)i − (w∗)i)

]2
+ Var

(
X> ((ŵS)i − (w∗)i)

)
)

= ‖E
η

[
X> (ŵS − w∗)

]
‖22 + tr Cov

(
X> (ŵS − w∗)

)

As we know mean and variance of the model and prediction errors (Table 3.4), we can substitute

those means and variances:

E
ηS

[
‖ŵS − w∗‖22

]
= ‖−λZS(λ)−1w∗‖22 + tr σ2

[
ZS(λ)−1 − λZS(λ)−2

]

= λ2
〈
ZS(λ)−2, w∗w∗>

〉
+ σ2 tr ZS(λ)−1 − λσ2 tr ZS(λ)−2

= σ2 tr ZS(λ)−1 − λ
〈
ZS(λ)−2, σ2I − λw∗w∗>

〉
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The challenge is the second-order termZS(λ)−2. One way to address is to consider only the

first-order termtr ZS(λ)−1. For example, [DW17a] assume that the regularizationλ is sufficiently

small: thatλ ≤ σ2

‖w∗‖2
2
. In such case, we haveλw∗w∗> � σ2I. Then,

E
ηS

[
‖ŵS − w∗‖22

]
≤ σ2 tr ZS(λ)−1 (3.47)

where the right-hand side now contains only the first-order termtr ZS(λ)−1 which can be optimized

by sampling-based algorithms. Note that it is an open question to directly bound the expected loss

without any assumption onλ.

For prediction error,

E
η

[
‖X> (ŵS − w∗)‖22

]
= ‖−λX>ZS(λ)−1w∗‖22 + tr σ2X>

[
ZS(λ)−1 − λZS(λ)−2

]
X

= λ2
〈
ZS(λ)−1XX>ZS(λ)−1, w∗w∗>

〉
+ σ2 tr X>ZS(λ)−1X − λσ2 tr X>ZS(λ)−2X

= σ2 tr X>ZS(λ)−1X − λ
〈
ZS(λ)−1XX>ZS(λ)−1, σ2I − λw∗w∗>

〉

Again, if we assume thatλ ≤ σ2

‖w∗‖2
2
, then we haveλw∗w∗> � σ2I. Then,

E
η

[
‖X> (ŵS − w∗)‖22

]
≤ σ2 tr X>ZS(λ)−1X (3.48)

The bound (3.47) is the analog of theA-optimal design objective, and is the motivation for the

ridge regression objective to be considered in the next subsection.

84



3.9.2 λ-RegularizedA-OptimalDesignandλ-RegularizedProportional Volume Sampling

In this section, we consider an approximation algorithm to the optimization problem that, given

V = [v1 . . . vn] ∈ Rd×n, integerk ≥ d, andλ ∈ R+, solve

min
S⊆[n],|S|=k

Ed−1ZS(λ)

EdZS(λ)
(3.49)

whereZS(λ) := VSV >
S + λI. Though this objective is motivated from the square loss from ridge

regression (see Table 3.5), it is not the same objective. However, if we assumeλ ≤ σ2

‖w∗‖2
2
, then the

loss is bounded above byEd−1ZS(λ)

EdZS(λ)
. Due to this motivation and its similarity with objective from

A-optimal design, we call problem (3.49)λ-regularizedA-optimal design.

DenoteUk (U≤k) the set of all subsetsS ⊆ [n] of sizek (of size≤ k). Givenλ ≥ 0, y ∈

Rn,U ∈ {Uk,U≤k}, andμ a distribution overU , we define theλ-regularized proportional volume

sampling with measureμ to be the distributionμ′ over U whereμ′(S) ∝ μ(S) det ZS(λ) for

all S ∈ U . Given y ∈ Rn, we say a distributionμ over U is hard-core with parameterz if

μ(S) ∝ zS :=
∏

i∈S zi for all S ∈ U . Denote‖A‖2 the spectral norm of matrixA.

To solveλ-regularizedA-optimal design, we solve the convex relaxation of the optimization

problem

min
x∈Rn

Ed−1(V (x)V (x)> + λI)

Ed(V (x)V (x)> + λI)
subject to (3.50)

n∑

i=1

xi = k, (3.51)

1 ≥ xi ≥ 0 (3.52)

whereV (x) := [
√

x1v1 . . .
√

xnvn], to get a fractional solutionx ∈ Rn. Note that convexity

follows from the convexity of functionEd−1(M)

Ed(M)
over the set of all PSD matricesM ∈ Rn×n.

Then, we useλ-regularized proportional volume sampling with hard-core measureμ with some
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parametery ∈ Rn which depends onx to sample outputS ∈ U≤k. The summary of the algorithm

is in Algorithm 3.4. The overall goal is to show that withk = Ω
(

d
ε
+ log(1/ε)

ε2

)
, Algorithm 3.4 has

(1 + ε√
1+ λ

‖V (x)V (x)‖2

)-approximation guarantee to solvingλ-regularizedA-optimal design.

Algorithm 3.4 SolvingminS⊆[n],|S|=k
Ed−1ZS(λ)

EdZS(λ)
with convex relaxation andλ-regularized propor-

tional volume sampling

1: Given an inputV = [v1, . . . , vn] wherevi ∈ Rd, k a positive integer,λ ≥ 0

2: Solve to get a fractional solutionx ∈ argminx∈[0,1]n,1>x=k

Ed−1(V (x)V (x)>+λI)
Ed(V (x)V (x)>+λI)

3: Let zi = xi

β−xi
whereβ = 1 + ε

4

√
1 + λ

‖V (x)V (x)‖2
.

4: SampleS from μ′(S) ∝ zS det ZS(λ) for eachS ∈ U≤k

5: OutputS (If |S| < k, addk − |S| arbitrary vectors toS first).

Theorem 3.9.1.GivenV = [v1 . . . vn] ∈ Rd×n, integerk ≥ d, andλ ∈ R+, Algorithm 3.4 has

(1 + ε)-approximation guarantee to solvingλ-regularizedA-optimal design.

We note that the approximation ratio is in fact a slightly tighter factor1 + ε√
1+ λ

‖V (x)V (x)‖2

, as

will be shown later in this section. This ratio shows that the algorithm’s performance improves as

λ increases, and is asymptotically optimal asλ→∞.

The proof of Theorem 3.9.1 relies on showing that proving an approximation guarantee of a

λ-regularized proportional volume sampling with measureμ reduces to showing a property onμ

which we callednear-pairwise independence. This reduction is explained in Theorem 3.9.4. We

then constructμ based on fractional solutionx and prove thatμ has such property in Section 3.9.5.

Finally, we note that our constructedμ is hardcore, and show that we can efficiently implement

λ-regularized proportional volume sampling with anyhard-coremeasureμ.

3.9.3 Related Work

Ridge regression or regularized regression is introduced by [HK70] to ensure a unique solution

of linear regression when data matrix is singular, i.e. when labeled datapoints do not span fulld
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dimensions. Ridge regression has been applied to many practical problems [MS75] and is one of

classical linear methods for regression in machine learning [HTF09].

λ-regularized volume sampling. [DW17a] introducedλ-regularized volume sampling and gave

theoretical guarantee bound for the model errorE
ηS

[‖ŵS − w∗‖22], which equals totr
(
VSV >

S + λI
)−1

,

the objective of focus in this section. We explain the similarity and difference of their guarantees

here. [DW17a] showed that forCov (η) � σ2I andλ ≤ σ2

‖w∗‖2 ,

E
S

[
tr
(
VSV >

S + λI
)−1
]
≤

σ2n tr((V V >+λI)−1)

k − dλ + 1
(3.53)

wheredλ = tr(V >(V V >+ λI)−1V ) (recall thatn is the number of vectors to choose from). For

λ = 0, dλ = d, anddλ decreases asλ increases.

The bound (3.53) is different from our goal of approximation ratio in this thesis. Indeed,

suppose thatS∗ is an optimal subset of the problem, then in expectation over the run of the our

algorithm,

E
S

[
tr
(
VSV >

S + λI
)−1
]
≤



1 + c
d− 1

(k − d + 1)
√

1 + λ
‖V (x)V (x)‖2



 σ2 tr((VS∗V >
S∗ + λI)−1)

(3.54)

for some fixed constantc (we assumed is large compared to1
ε

so thatd
ε
+ log(1/ε)

ε2
= O

(
d
ε

)
). When

λ = 0, our bound (3.54) simplifies to a bound similar to (3.53):

E
S

[
tr
(
VSV >

S + λI
)−1
]
≤

σ2k tr((VS∗VS∗+λI)−1)

k − dλ + 1

The main difference between our guarantee and ones by [DW17a] is that ours is in comparison

to the best possible subsetS∗, whereas (3.53) compares the performance to labelling the whole

original dataset.
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3.9.4 Reductionof Approxibility to Near-Pairwise Independence

In this section, we show that an approximation guarantee of aλ-regularized proportional volume

sampling with measureμ to λ-regularizedA-optimal design reduces to showing a property onμ

which we callednear-pairwise independence. We first definenear-pairwise independenceof a

distribution.

Definition 3.9.2. Let μ be a distribution onU ∈ {Uk,U≤k}. Let x ∈ Rn
+. We sayμ is (c, α)-near-

pairwise independentwith respect tox if for all T,R ⊆ [n] each of size at mostd,

Pr
S∼μ

[S ⊇ T ]

Pr
S∼μ

[S ⊇ R]
≤ cα|R|−|T |x

T

xR
(3.55)

We omit the phrase "with respect tox" when the context is clear. Before we prove the main

result, we make some calculation which will be used later.

Lemma 3.9.3.For any matrix PSDX ∈ Rd×d anda ∈ R,

Ed (X + aI) =
d∑

i=0

Ei(X)ad−i (3.56)

and

Ed−1 (X + aI) =
d−1∑

i=0

(d− i)Ei(X)ad−1−i (3.57)

Proof. Let λ be eigenvalues ofX. Then,

Ed (X + aI) =
d∏

i=1

(λi + a) =
d∑

i=0

ei(λ)ad−i =
d∑

i=0

Ei(X)ad−i
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proving the first equality. Next, we have

Ed−1 (X + aI) =
d∑

j=1

∏

i∈[d],i 6=j

(λi + a)

=
d∑

j=1

d−1∑

i=0

ei(λ−j)a
d−1−i =

d−1∑

i=0

(
d∑

j=1

ei(λ−j)

)

ad−1−i

whereλ−j is λ with one elementλj deleted. For each fixedi ∈ {0, . . . , d − 1}, we have

d∑

j=1

ei(λ−j) = (d− i)ei(λ) (3.58)

by counting the number of each monomial inei(λ). Notingei(λ) = Ei(X) finishes theproof.

Now we are ready to prove the main result.

Theorem 3.9.4.Let x ∈ [0, 1]n. Let μ be a distribution onU ∈ {Uk,U≤k} that is (c, α)-near-

pairwise independent. Then theλ-regularized proportional volume samplingμ′ with measureμ

satisfies

E
S∼μ′

[
Ed−1 (ZS(λ))

Ed (ZS(λ))

]

≤ cα
Ed−1

(
V (x)V (x)> + αλI

)

Ed (V (x)V (x)> + αλI)
(3.59)

That is, the sampling givescα-approximation guarantee toαλ-regularizedA-optimal design in

expectation.

Note that by
Ed−1(V (x)V (x)>+αλI)
Ed(V (x)V (x)>+αλI)

≤
Ed−1(V (x)V (x)>+λI)
Ed(V (x)V (x)>+λI)

, (3.59) also impliescα-approximation

guarantee to the originalλ-regularizedA-optimal design. However, we can exploit the gap of these

two quantities to get a better approximation ratio which converges to 1 asλ→∞. This is done in

Theorem 3.9.6.
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Proof. We apply Lemma 3.9.3 to RHS of (3.59) to get

Ed−1

(
V (x)V (x)> + αλI

)

Ed (V (x)V (x)> + αλI)
=

∑d−1
h=0(d− h)Eh(V (x)V (x)>)(αλ)d−1−h

∑d
`=0 E`(V (x)V (x)>)(αλ)d−`

=

∑d−1
h=0

∑
|T |=h(d− h)(αλ)d−1−hxT det

(
V >

T VT

)

∑d
`=0

∑
|R|=`(αλ)d−`xR det

(
V >

R VR

)

where we apply Cauchy-Binet to the last equality. Next, we apply Lemma 3.9.3 to LHS of (3.59)

to get

E
S∼μ′

[
Ed−1 (ZS(λ))

Ed (ZS(λ))

]

=

∑
S∈U μ(S)Ed(ZS(λ))Ed−1(ZS(λ))

Ed(ZS(λ))∑
S∈U μ(S)EdZS(λ)

=

∑
S∈U μ(S)Ed−1ZS(λ)
∑

S∈U μ(S)EdZS(λ)

=

∑
S∈U μ(S)

∑d−1
h=0(d− h)Eh(VSV >

S )λd−1−h

∑
S∈U μ(S)

∑d
`=0 E`(VSV >

S )λd−`

=

∑
S∈U μ(S)

∑d−1
h=0

∑
|T |=h,T⊆S(d− h)λd−1−h det

(
V >

T VT

)

∑
S∈U μ(S)

∑d
`=0

∑
|R|=`,R⊆S λd−` det

(
V >

R VR

)

=

∑d−1
h=0

∑
|T |=h

∑
S∈U ,S⊇T μ(S)(d− h)λd−1−h det

(
V >

T VT

)

∑d
`=0

∑
|R|=`

∑
S∈U ,S⊇R μ(S)λd−` det

(
V >

R VR

)

=

∑d−1
h=0

∑
|T |=h(d− h)λd−1−h det

(
V >

T VT

)
Pr
S∼μ

[S ⊇ T ]

∑d
`=0

∑
|R|=` λd−` det

(
V >

R VR

)
Pr
S∼μ

[S ⊇ R]

Therefore, by cross-multiplying the numerator and denominator, the ratio
E

S∼μ′

[
Ed−1(ZS (λ))

Ed(ZS (λ))

]

Ed−1(V (x)V (x)>+αλI)
Ed(V (x)V (x)>+αλI)

is

=

∑d−1
h=0

∑
|T |=h

∑d
`=0

∑
|R|=`(d− h) det

(
V >

T VT

)
det
(
VRV >

R

)
λd−1−h(αλ)d−`xRPr

μ
[S ⊇ T ]

∑d−1
h=0

∑
|T |=h

∑d
`=0

∑
|R|=`(d− h) det

(
V >

T VT

)
det
(
VRV >

R

)
λd−`(αλ)d−1−hxT Pr

μ
[S ⊇ R]

For each fixedh, T, `, R, we want to upper bound
λd−1−h(αλ)d−`xRPr

μ
[S⊇T ]

λd−`(αλ)d−1−hxT Pr
μ

[S⊇R]
. By the definition of
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near-pairwise independence (3.55),

λd−1−h(αλ)d−`xRPr
μ

[S ⊇ T ]

λd−`(αλ)d−1−hxT Pr
μ

[S ⊇ R]
≤

λd−1−h(αλ)d−`

λd−`(αλ)d−1−h
cα`−h (3.60)

= αh−`+1 ∙ cα`−h = cα (3.61)

Therefore, the ratio
E

S∼μ′

[
Ed−1(ZS (λ))

Ed(ZS (λ))

]

Ed−1(V (x)V (x)>+αλI)
Ed(V (x)V (x)>+αλI)

is also bounded above bycα.

3.9.5 Constructinga Near-Pairwise-Independent Distribution

In this section, we want to construct a distributionμ on U≤k and prove its (c, α)-near-pairwise-

independent property. Our proposedμ is hard-core with parameterz ∈ Rn defined byzi := xi

β−xi

(coordinate-wise) for someβ ∈ (1, 2]. With this choice ofμ, we upper bound the ratio
Pr

S∼μ
[S⊇T ]

Pr
S∼μ

[S⊇R]
in

terms ofβ. Later in Section 3.9.6, after getting an explicit approximation ratio in term ofβ here,

we found that under the assumptionk = Ω
(

d
ε
+ log(1/ε)

ε2

)
, the choiceβ = 1 + ε

4

√
1 + λ

‖V (x)V (x)‖2

gives(1 + ε√
1+ λ

‖V (x)V (x)‖2

)-approximation guarantee to Algorithm 3.4.

Lemma 3.9.5.Letx ∈ [0, 1]n such that
∑n

i=1 xi = k. Letμ be a distribution onU≤k that is hard-

core with parameterz ∈ Rn defined byzi := xi

β−xi
(coordinate-wise) for someβ ∈ (1, 2]. Then,

for all T,R ⊆ [n] of sizeh, ` between 0 andd, we have

Pr
S∼μ

[S ⊇ T ]

Pr
S∼μ

[S ⊇ R]
≤

β`−h

1− exp
(
− (β−1)k−βd)2

3βk

) ∙
xT

xR
(3.62)

That is,μ is

(
1

1−exp
(
− (β−1)k−βd)2

3βk

) , β

)

-near-pairwise independent.

Proof. Fix T,R of size0 ≤ h, ` ≤ d. DefineB ⊆ [n] to be the random set that includes each

i ∈ [n] independently with probabilityxi/β. Let Yi = 1 [i ∈ B] andY =
∑

i/∈R Yi. Then, noting
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thatzi = xi/β
1−xi/β

, we have

Pr
S∼μ

[S ⊇ T ]

Pr
S∼μ

[S ⊇ R]
=

Pr [B ⊇ T, |B| ≤ k]

Pr [B ⊇ R, |B| ≤ k]
≤

Pr [B ⊇ T ]

Pr [B ⊇ R, |B| ≤ k]

= β`−h xT

xR

1

Pr
[∑

i/∈R Yi ≤ k − `
]

Let x(R) =
∑

i∈R xi. Then by Chernoff bound,

Pr [Y > k − `] ≤ exp

(

−
((β − 1)k + x(R)− β`)2

3β(k − x(R))

)

≤ exp

(

−
((β − 1)k − βd)2

3βk

)

(3.63)

which finishes theproof.

3.9.6 TheProofof theMain Result

The main aim of this section is prove the(1 + ε√
1+ λ

‖V (x)V (x)‖2

)-approximation guarantee of the

λ-regularized proportional volume sampling algorithm forλ-regularizedA-optimal design. The

main result is stated formally in Theorem 3.9.6.

Lemma 3.9.5 shows that our constructedμ is (c, β)-near-pairwise independent for somec

dependent onβ. Theorem 3.9.4 translates this property to the(cβ)-approximation guarantee to

βλ-regularizedA-optimal design problem. However, this is a gap between the optimum ofβλ-

regularizedA-optimal design and that ofλ-regularizedA-optimal design. This gap obviously

depends onβ and is quantified in Claim 5. Therefore, we want to pickβ small enough to bound

(cβ)-approximation guarantee but also big enough to exploit this gap. The optimization ofβ is

done formally in Theorem 3.9.6, giving the(1 + ε√
1+ λ

‖V (x)V (x)‖2

)-approximation guarantee.

Before proving the main theorem, we first simplify the parameterc of (c, β)-near-pairwise

independentμ that we constructed. The calculation shows thatk = Ω
(

d
ε
+ log(1/ε)

ε2

)
is a right

condition to obtainc ≤ 1 + ε.
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Claim 4. Let ε′ > 0, β > 1. Suppose

k ≥
2βd

β − 1
+

3β

(β − 1)2
log(1/ε′) (3.64)

Then

exp

(

−
(β − 1)k − βd)2

3βk

)

≤ ε′ (3.65)

Proof. (3.65) is equivalent to

(β − 1)k − βd ≥
√

3β log(1/ε′)k

which, by solving the quadratic equation in
√

k, is further equivalent to

√
k ≥

√
3β log(1/ε′) +

√
3β log(1/ε′) + 4(β − 1)βd

2(β − 1)

Using inequality
√

a +
√

b ≤
√

2(a + b), we have

√
3β log(1/ε′) +

√
3β log(1/ε′) + 4(β − 1)βd

2(β − 1)
≤

√
3β log(1/ε′) + 2(β − 1)βd

β − 1

=

√
3β

(β − 1)2
log(1/ε′) +

2βd

β − 1

so the result follows.

Next, we quantify the gap of the optimum ofβλ-regularizedA-optimal design and that of

λ-regularizedA-optimal design.

Claim 5. LetM ∈ Rd×d be a PSD matrix, and letβ, λ ≥ 0. Then,

Ed−1 (M + βλI)

Ed (M + βλI)
≤

1 + λ
‖M‖2

1 + β λ
‖M‖2

Ed−1 (M + λI)

Ed (M + λI)
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Proof. Let γ be eigenvalues ofM . Then, γi+λ
γi+βλ

≤ ‖M‖2+λ
‖M‖2+βλ

=
1+ λ

‖M‖2

1+β λ
‖M‖2

for all i ∈ [d]. Therefore,

Ed−1 (M + βλI)

Ed (M + βλI)
=

d∑

i=1

1

γi + βλ

≤
1 + λ

‖M‖2

1 + β λ
‖M‖2

d∑

i=1

1

γi + λ
=

1 + λ
‖M‖2

1 + β λ
‖M‖2

Ed−1 (M + λI)

Ed (M + λI)

asdesired.

Now we are ready to state and prove the main result of this section.

Theorem 3.9.6.LetV = [v1, . . . , vn] ∈ Rd×n, ε ∈ (0, 1), λ ≥ 0, x ∈ [0, 1]n and suppose

k ≥
10d

ε
+

60

ε2
log(4/ε) (3.66)

Denoteλ′ = λ
‖V (x)V (x)>‖2

. Then theλ-proportional volume samplingμ′ with hard-core measureμ

with parameterzi := xi

β−xi
(coordinate-wise) withβ = 1 + ε

4

√
1 + λ′ satisfies

E
S∼μ′

[
Ed−1 (ZS(λ))

Ed (ZS(λ))

]

≤

(

1 +
ε

√
1 + λ′

)
Ed−1

(
V (x)V (x)> + λI

)

Ed (V (x)V (x)> + λI)
(3.67)

Therefore, Algorithm 3.4 gives(1+ ε√
1+λ′ )-approximation ratio toλ-regularized A-optimal design

problem.

The approximation guarantee of Algorithm 3.4 follows fromx being a convex solution to the

λ-regularizedA-optimal design, so the objective given byx is at most the optimal integral solution

of theλ-regularizedA-optimal design problem.
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Proof. Denoteβλ′ = 1 + ε
√

1+λ′

4
andβ0 = 1 + ε

4
. By inequality (3.66),

k ≥
10d

ε
+

60

ε2
log(4/ε) =

5d

2(β0 − 1)
+

15

4(β0 − 1)2
log(4/ε) (3.68)

≥
2β0d

β0 − 1
+

3β0

(β0 − 1)2
log(4/ε) (3.69)

The last inequality is byβ0 = 1 + ε
4
≤ 5

4
. We have β0

β0−1
≥ βλ′

βλ′−1
and

β0

(β0 − 1)2
=

1

β0 − 1
+

1

(β0 − 1)2
=

√
1 + λ′

βλ′ − 1
+

(
√

1 + λ′)2

(βλ′ − 1)2
≥

√
1 + λ′

βλ′ − 1
+

√
1 + λ′

(βλ′ − 1)2

=
√

1 + λ′
βλ′

(βλ′ − 1)2

Therefore, (3.69) implies

k ≥
2βλ′d

βλ′ − 1
+

3βλ′

(βλ′ − 1)2

√
1 + λ′ log(4/ε) (3.70)

By Lemmas 3.9.5,μ is (c, β)-near-pairwise independent forc = 1

1−exp
(
− (β−1)k−βd)2

3βk

) . We now use

Claim 4 to boundc: with the choice ofβ = βλ′ andε′ =
(

ε
4

)√1+λ′

in Claim 4, we havec ≤ 1
1−ε′

.

Therefore, by Theorem 3.9.4, Algorithm 3.4 guarantees objective with factor at mostcβ = β
1−ε′

from optimum ofβλ-regularizedA-optimal design, i.e.

E
S∼μ′

[
Ed−1 (ZS(λ))

Ed (ZS(λ))

]

≤
β

1− ε′
Ed−1

(
V (x)V (x)> + βλI

)

Ed (V (x)V (x)> + βλI)
(3.71)

Now we apply Claim 5 to exploit the gap betweenλ- andβλ-regularizedA-optimal design:

Ed−1

(
V (x)V (x)> + βλI

)

Ed (V (x)V (x)> + βλI)
≤

1 + λ′

1 + βλ′
∙
Ed−1

(
V (x)V (x)> + βλI

)

Ed (V (x)V (x)> + βλI)

95



Therefore, Algorithm 3.4 gives approximation ratio of

β

1− ε′
∙

1 + λ′

1 + βλ′
=

(

1 +
β − 1

1 + βλ′

)

(1− ε′)
−1 ≤

(

1 +
β − 1

1 + λ′

)

(1− ε′)
−1

=

(

1 +
ε

4
√

1 + λ′

)

(1− ε′)
−1

As ε/4 < 1/e, we have the inequalityε′ =
(

ε
4

)√1+λ′

≤ ε
4
√

1+λ′ . Hence,(1− ε′)−1 ≤
(
1− ε

4
√

1+λ′

)−1

.

Thus, the approximation factor is at most

(

1 +
ε

4
√

1 + λ′

)(

1−
ε

4
√

1 + λ′

)−1

≤ 1 +
ε

√
1 + λ′

(3.72)

where the inequality is byε ≤ 1.

Note that we could have used fractional solutionx from solving convex relaxation with reg-

ularizerβλ instead ofλ in Algorithm 3.4. This does not change the approximation ratio of the

algorithm nor the proof, but in practice this gives a smaller value of
Ed−1(V (x)V (x)>+βλI)
Ed(V (x)V (x)>+βλI)

to more

tightly bound the objective of the algorithm using (3.59).

3.9.7 Efficient Implementationof λ-RegularizedProportional Volume Sampling

In this section, we show thatλ-regularized proportional volume sampling can be implemented

in polynomial time. The deterministic counterpart and its generalized version that naturally fol-

lows Section 3.5.3 (λ-regularized proportional̀-volume sampling – samplingS with μ′(S) ∝

zSE`(VSV >
S + λI) to solve the generalized ratio objective with regularizer) can also be imple-

mented in polynomial time by following a similar argument.

The following is the main statement for efficient implementation ofλ-regularized version of

proportional volume sampling. The standard counterpart was stated in Theorem 3.6.2.

Theorem 3.9.7.Let z ∈ Rn
+, v1, . . . , vn ∈ Rd, λ ≥ 0, 1 ≤ k ≤ n, U ∈ {Uk,U≤k}, andV =

[v1, . . . , vn]. Then there is a randomized algorithmA that runs inpoly(n, d) time which outputs
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S ∈ U such that

Pr
S∼A

[S = S] =
zS det(VSV >

S + λI)
∑

S′∈U zS′ det(V ′
SV ′>

S + λI)
=: μ′(S)

That is, the algorithm correctly implementsλ-regularized proportional volume samplingμ′ with

hard-core measureμ onU with parameterz. The algorithm runs inO (n4dk2 log(dk)) number of

arithmetic operations.

Moreover, there is an efficient derandomization of the algorithm. The algorithm also runs in

the same time complexityO (n4dk2 log(dk)) number of arithmetic operations.

Proof. The argument follows similarly with one in Theorem 3.6.2, with some modification of

calculation later in the proof. We sample by starting with an empty setS = ∅. Then, in each step

i = 1, 2, . . . , n, decide with the correct probability

Pr
S∼μ′

[i ∈ S|I ⊆ S, J ∩ S = ∅]

whether to includei in S or not, given the previous outcome. LetI ′ = I ∪ {i}. This probability

equals to

Pr
S∼μ′

[i ∈ S|I ⊆ S, J ∩ S = ∅] =

Pr
S∼μ′

[I ′ ⊆ S, J ∩ S = ∅]

Pr
S∼μ′

[I ⊆ S, J ∩ S = ∅]

=

∑
S∈U ,I′⊆S,J∩S=∅ zS det(VSV >

S + λI)
∑

S∈U ,I⊆S,J∩S=∅ zS det(VSV >
S + λI)

=

∑
S∈U ,I′⊆S,J∩S=∅ zS

∑d
h=0 λd−h

∑
|R|=h,R⊂S det(V >

R VR)
∑

S∈U ,I⊆S,J∩S=∅ zS
∑d

h=0 λd−h
∑

|R|=h,R⊂S det(V >
R VR)

=

∑d
h=0 λd−h

∑
S∈U ,I′⊆S,J∩S=∅ zS

∑
|R|=h,R⊂S det(V >

R VR)
∑d

h=0 λd−h
∑

S∈U ,I⊆S,J∩S=∅ zS
∑

|R|=h,R⊂S det(V >
R VR)

where we apply Lemma 3.9.3 and the Cauchy-Binet formula in the third equality. Both the numer-

ator and denominator are sums over terms in the form
∑

S∈U ,A⊆S,J∩S=∅ zS
∑

|R|=h,R⊂S det(V >
R VR)

for some setA ⊆ U andh = 0, 1, . . . , d. We have shown in the proof of Theorem 3.6.2 that
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a term in such form can be computed in polynomial time. More specifically, for eachA ∈

{I ′, I}, we compute polynomialF (t1, t2, t3) in Lemma 3.6.1 only once to find the coefficients

of the all monomialstk0
1 td0

2 t
|I|
3 for k0 = 0.1. . . . , k and d0 = 0, 1, . . . , d, giving the value of

∑
S⊆U ,|S|=k0,A⊆S,J∩S=∅ zS

∑
|R|=d0,R⊂S det(V >

R VR) for eachk0, d0. Hence, the sampling can be

done both forU = Uk (when we just needk0 = k), and forU = U≤k when we need values for

k0 = 1, 2, . . . k. Computing polynomialF (t1, t2, t3) takesO (n3dk2 log(dk)) number of arithmetic

operations by Lemma 3.6.1 and is the bottleneck in each of then sampling steps, and hence the

total runtime isO (n4dk2 log(dk)) number of arithmetic operations.

Derandomization can be done identically to obtain the same result as in Theorem 3.6.5. Gen-

erlization to`-volume sampling can be done identically to Theorem 3.6.11. The runtimes for

λ-regularized counterpart are the same for both theorems. The modifications of proofs to obtain

the results are identical to the proof of Theorem 3.9.7. That is, to expand any terms in the form

Ed(VSV >
S +λI) (orEh(VSV >

S +λI) for otherh’s) into polynomial inλ with coefficients in the form

Ed0(VSV >
S ), and use Lemma 3.6.1 to calculate all terms of interests for alld0 = 0, 1, . . . , d.
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CHAPTER 4

COMBINATORIAL ALGORITHMS FOR OPTIMAL DESIGN

4.1 Introduction

One of the classical optimization methods that is used for optimal design problems is the local

search heuristic which is also called the Fedorov’s exchange method [Fed72] (see also [MMJ70]).

The method starts with any set ofk experiments from the given set ofn experiments and aims

to exchange one of the design vectors if it improves the objective. The ease in implementing the

method as well as its efficacy in practice makes the method widely used [NM92] and implemented

in statistics softwares such as SAS (see [ADT07], Chapter 13). Moreover, there has been consid-

erable study on heuristically improving the performance of the algorithm. Surprisingly, theoretical

analysis of this classical algorithm has not been performed despite its wide usage. In this thesis,

we bridge this gap and give theoretical guarantees on the performance of local search heuristic for

D andA-optimal design problems. In addition to local search, we analyze the greedy heuristic for

theD andA-optimal design problems.

4.1.1 Main ApproximationResultsof Combinatorial Algorithms

Our main contribution is to prove worst case bounds on the performance of simple local search

algorithm (also known as Fedorov Exchange method) and greedy algorithms. Our results also give

worst case performance guarantee on the variants of local search algorithm.

Our first result is for theD-optimal design problem where we show the following guarantee.

We consider both settings when the design vectors are allowed to be repeated in the solution and

when they are not allowed to be repeated.
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Theorem 4.1.1.For anyε > 0, the local search algorithm returns a(1 + ε)-approximate solution

for D-DESIGN with or without repetitions wheneverk ≥ d + d
ε
.

Our analysis method crucially uses the convex relaxation for theD-DESIGNproblem. In recent

works, the convex relaxation has been studied extensively and various rounding algorithms have

been designed ([WYS16, ALSW17b, SX18, NST19]). Solving the convex relaxation is usually

the bottleneck in the running time of all these algorithms. Our results differ from this literature in

that we only use the convex relaxation for the analysis of the local search heuristic. The algorithm

does not need to solve the convex program (or even formulate it). We use thedual-fittingapproach

to prove the guarantee. We also remark the above guarantee improves on the best previous bound,

that gave(1 + ε)-approximation fork = Ω
(

d
ε
+ 1

ε2
log 1

ε

)
and so had an additional additive term of

1
ε2

log 1
ε

in the requirement on the size ofk.

We also consider the natural greedy algorithm forD-DESIGN problem. Indeed this algorithm

has also been implemented and tested in empirical studies (see for example [ADT07], Chapter 12)

and is referred to as the forward procedure algorithm. The algorithm is initialized to a small set

of experiments and new experiments are added greedily. We show that the guarantee is slightly

specific to the initialized set. If the initialized set is a local optimum set of sized, we obtain the

following result. Again we employ the dual-fitting approach to prove the bounds.

Theorem 4.1.2.For any ε > 0, the greedy algorithm forD-DESIGN with repetitions returns a

(1 + ε)-approximate solution wheneverk ≥ Ω
(

d
ε

(
log 1

ε
+ log log d

))
.

A-DESIGN. While the simple combinatorial algorithms have tight asymptotic guarantee forD-

DESIGN, we show that a similar guaranteecannotbe proven forA-DESIGN. Indeed, there are

examples where local optimum can be arbitrarily bad as compared to the optimum solution as

we show in Section 4.3.3. We note that the bad local optima arise due to presence of long vectors

among design vectors. In particular, we show that this is theonlybottleneck to obtain an asymptotic

guarantee on the performance of the local search algorithm. Moreover, we show a combinatorial
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iterative procedure to truncate the length of all the vectors while ensuring that the value of the

optimal solution does not change significantly. This allows us to obtain a modified local search

procedure with the following guarantee.

Theorem 4.1.3.The modified local search algorithm forA-DESIGN with repetitions returns a

(1 + ε)-approximate solution wheneverk = Ω
(

d
ε4

)
.

We note that the above asymptotic guarantee does not match the best approximation algo-

rithms [NST19] forA-DESIGN as was the case ofD-DESIGN. Nonetheless, it specifically points

why local search algorithm performs well in practice as has been noted widely [ADT07].

We also consider the natural greedy algorithm for theA-DESIGNproblem, which again requires

truncating the length of all vectors. As inD-DESIGN problem, the guarantee depends on the

initialized set. If the initialized set is a local optimum set of sizecd for an absolute constantc, we

obtain the following guarantee.

Theorem 4.1.4.The modified greedy algorithm forA-DESIGN with repetitions returns a(1 + ε)-

approximate solution wheneverk ≥ Ω
(

d
ε3

log2 1
ε

)
.

Approximate Local Search: Theorem 4.1.1 and 4.1.3 show that the local search forD-DESIGN

and modified local search forA-DESIGNyield (1+ε)-approximation algorithm. But, as are typical

of local search algorithms, they are usually not polynomial time algorithms. However, the standard

fix is to make local improvements only when the objectives improves by a factor of1 + δ. With

appropriately chosenδ, this implies a polynomial running time at the cost of a slight degradation

in the approximation guarantee. We show that under the same assumption on parameterk, ap-

proximate local search forD-DESIGN and modified approximate local search forA-DESIGN yield

(1 + 2ε)-approximation whenδ is small enough and take polynomially many iterations.

Theorem 4.1.5.The(1 + δ)-approximate local search algorithm forD-DESIGN with repetitions

returns a(1 + 2ε)-approximate solution wheneverk ≥ d + d
ε

andδ < εd
2k

, and the algorithm runs

in polynomial time.
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Theorem 4.1.6.The modified(1 + δ)-approximate local search algorithm forA-DESIGN with

repetitions returns a(1 + 2ε)-approximate solution wheneverk = Ω
(

d
ε4

)
and δ < εd

2k
, and the

algorithm runs in polynomial time.

Runtime of approximate local search algorithms areO
(

Lknd3 log d+knd2 log k
δ

)
whereL is the bit

biggest bit complexity of entries in input vectors (details are in Sections 4.6 and 4.7). We note that

approximate local optimum sets are sufficient for initialization of greedy algorithms, implying that

greedy algorithms run in polynomial time.

4.1.2 Related Work

Please refer to Related Work from previous chapter in Section 3.1.2.

4.1.3 Organization

In Section 4.2, we analyze the local search algorithm forD-DESIGN and prove Theorem 4.1.1.

In Section 4.3, we analyze the modified local search algorithm forA-DESIGN and prove Theo-

rem 4.1.3. Sections 4.4 and 4.5 include details and proofs deferred from the main body of the

paper. We present approximate local search algorithms forD-DESIGN andA-DESIGN and their

analysis in Sections 4.6 and 4.7, respectively, proving Theorems 4.1.5 and 4.1.6. Greedy algo-

rithms and their analysis forD-DESIGN andA-DESIGN are presented in Sections 4.8 and 4.9,

respectively, which prove Theorems 4.1.2 and 4.1.4.

4.2 Local Search forD-DESIGN

We first give the local search algorithm forD-DESIGN with repetitions.

102



Algorithm 4.1 Local search algorithm forD-DESIGN

Input: V = {v1, . . . , vn} wherevi ∈ Rd, d ≤ k ∈ N.
Let I be any (multi)-subset of[1, n] of sizek such thatX =

∑
i∈I viv

>
i is non-singular matrix.

While ∃i ∈ I, j ∈ [1, n] such thatdet
(
X − viv

>
i + vjv

>
j

)
> det(X):

X ← X − viv
>
i + vjv

>
j

I ← I \ {i} ∪ {j}
Return(I,X)

4.2.1 LocalSearch Algorithm

4.2.2 Relaxations

To prove the performance of local search algorithm, presented earlier as Theorem 4.1.1, we use the

convex programming relaxation for theD-DESIGN problem. We first describe these relaxations

in Figure 2.2c in Preliminaries. (see Chapter 7 of [BV04]). Let OPT denote the be the common

optimum value of (D-REL) and its dual (D-REL-DUAL ). Let I? denote the indices of the vector

in the optimal solution and letφD = det
(∑

i∈I? viv
>
i

) 1
d be its objective. Recall thatφD

f ≥ log φD.

Theorem 4.1.1 now follows from the following result.

Theorem 4.2.1.LetX be the solution returned by Algorithm 4.1. Then,

det(X) ≥

(
k − d + 1

k

)d

ed∙φD
f

and therefore,

det(X)
1
d ≥

k − d + 1

k
∙ φD.

Before we prove Theorem 4.2.1, we begin with a few definitions. Let(I,X) be the returned

solution of the algorithm. LetVI be thed × |I| matrix whose columns arevi for eachi ∈ I.

Observe thatX = VIV
>
I andX is invertible sincedet(X) > 0 at the beginning of the algorithm

anddet(X) only increases in later iterations. We letτi = v>
i X−1vi for any1 ≤ i ≤ n. Observe

that if i ∈ I, thenτi is the leverage score of rowvi with respect to the matrixV >
I . We also let
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τij = v>
i X−1vj for any1 ≤ i, j ≤ n.

Notations: For convenience, we summarize the notations used in this section.

• OPT is the common optimum value of (D-REL) and its dual (D-REL-DUAL ).

• I? ⊆ [1, n] is the set of indices of the vectors in the optimal solution.

• φD = det
(∑

i∈I? viv
>
i

) 1
d , the integral optimum value ofD-DESIGN

• I ⊆ [1, n], X =
∑

i∈I viv
>
i is the solution returned by the algorithm.

• For1 ≤ i ≤ n, τi = v>
i X−1vi.

• For1 ≤ i, j ≤ n, τij = v>
i X−1vj.

The following lemma states standard properties about leverage scores of vectors with respect

to the PSD matrixX =
∑

i∈I viv
>
i (see for example [DMIMW12]). These results hold even when

X is not an output from a local search algorithm and the proof is included in the appendix.

Lemma 4.2.2.Letv1, . . . , vn ∈ Rd andI ⊆ [n]. For any matrixX =
∑

i∈I viv
>
i , we have:

1. For anyi ∈ I, we haveτi ≤ 1. Moreover, for anyi ∈ I, τi = 1 if and only ifX − viv
>
i is

singular.

2. We have
∑

i∈I τi = d.

3. For any1 ≤ j ≤ n, we have
∑

i∈I τijτji = τj.

4. For any1 ≤ i, j ≤ n, we haveτij = τji andτij ≤
√

τiτj.

We now prove an upper bound onτj for the local optimal solution. This lemma utilizes the

local optimality condition crucially.

Lemma 4.2.3.For anyj ∈ [1, n], τj ≤ d
k−d+1

.
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Before we prove the lemma, we complete the proof of Theorem 4.2.1 using Lemma 4.2.3.

Theorem 4.2.1.We construct a feasible solution to the (D-REL-DUAL ) of the objective value at

most 1
d
log det(X) + log k

k−d+1
. This would imply that

φD
f ≤

1

d
log det(X) + log

k

k − d + 1

which proves the first part of the theorem. The second part follows sinceφD
f ≥ log φD.

Let Y = αX, μ = max1≤j≤n v>
j Y −1vj = 1

α
maxj∈[1,n] v

>
j X−1vj whereα > 0 will be fixed

later. Then,(Y, μ) is a feasible solution of (D-REL-DUAL ). Hence,

φD
f ≤

1

d
log det(αX) +

k

d
∙

1

α
max
j∈[1,n]

v>
j X−1vj − 1

≤ log α +
1

d
log det(X) +

k

dα
∙

d

k − d + 1
− 1 (Lemma 4.2.3)

Settingα = k
k−d+1

, we get

φD
f ≤ log

k

k − d + 1
+

1

d
log det(X) + 1− 1 = log

k

k − d + 1
+

1

d
log det(X)

asrequired.

We now prove Lemma 4.2.3.

Lemma 4.2.3.SinceX is a symmetric matrix,X−1 is also a symmetric matrix and thereforeτij =

τji for eachi, j. We first show that the local optimality condition implies the following claim:

Claim 6. For anyi ∈ I and1 ≤ j ≤ n, we haveτj − τiτj + τijτji ≤ τi.

Proof. Let i ∈ I, j ∈ [1, n]. By local optimality ofI,

det(X − viv
>
i + vjv

>
j ) ≤ det(X).
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Next we cite the following lemma for a determinant formula.

Lemma 4.2.4. (Matrix Determinant Lemma, [Har97]) For any invertible matrixA ∈ Rd×d and

a, b ∈ Rd,

det(A + ab>) = det(A)(1 + b>A−1a)

Applying the Lemma twice todet(X − viv
>
i + vjv

>
j ), the local optimality condition implies

that

det(X) ≥ det(X − viv
>
i + vjv

>
j ) = det(X + vjv

>
j )(1− v>

i (X + vjv
>
j )−1vi)

= det(X)(1 + v>
j X−1vj)(1− v>

i (X + vjv
>
j )−1vi)

Hence,(1 + v>
j X−1vj)(1 − v>

i (X + vjv
>
j )−1vi) ≤ 1. Applying Sherman-Morrison formula, we

get

(1 + v>
j X−1vj)

(

1− v>
i

(

X−1 −
X−1vjv

>
j X−1

1 + v>
j X−1vj

)

vi

)

≤ 1

(1 + τj)

(

1− τi +
τijτji

1 + τj

)

≤ 1

(1− τi)(1 + τj) + τijτji ≤ 1

τj − τiτj + τijτji ≤ τi.

This finishes the proof of Claim 6.

Now summing the inequality in Claim 6 over alli ∈ I, we get

∑

i∈I

(τj − τiτj + τijτji) ≤
∑

i∈I

τi.
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Applying Lemma 4.2.2, we obtain thatkτj − dτj + τj ≤ d. Rearranging, we obtain that

τj ≤
d

k − d + 1

asdesired.

4.2.3 D-DESIGN without Repetitions

We defer the proof of local search forD-DESIGN without repetitions to Section 4.4.

4.3 Local Search forA-DESIGN

In this section, we prove the performance of modified local search, presented earlier as Theo-

rem 4.1.3. As remarked earlier, we need to modify the instance to cap the length of the vectors

before applying the local search procedure. This is done in Section 4.3.1. We show that the value

of any feasible solution only increases after capping. Moreover, the value of the natural convex

programming relaxation increases by at most a small factor. We then analyze that the local search

algorithm applied to vectors of short length returns a near optimal solution. Combining these facts

give a complete analysis of modified local search forA-DESIGN in Section 4.3.2 which implies

Theorem 4.1.3.

4.3.1 Capping Vectors

Algorithm 4.2 Capping vectors length forA-DESIGN

Input: V = {v1, . . . , vn} ⊆ Rd, parameterΔ.
While ∃i ∈ [1, n], ||vi||22 > Δ:
t = argmaxi∈[n] ||vi||2.

For j ∈ [1, n], vj =
(
Id − 1

2

vtv>
t

||vt||22

)
vj

For j ∈ [1, n], uj = vj.
ReturnU = {u1, . . . , un} ⊆ Rd
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The algorithm to cap the length of input vectors is given in Algorithm 4.2. In each iteration,

it considers the longest vectorvt. If the length of this vector (and thus every vector) is at mostΔ,

then it returns the current updated vectors. Else, it scales down all the vectors along the direction

of the longest vector. Here,Id denotes thed-by-d identity matrix.

Before we give the guarantee about the algorithm, we introduce the convex program for theA-

DESIGN problem in Figure 2.1c (see Chapter 7 of [BV04]) in Preliminaries. For any input vectors

V = {v1, . . . , vn}, the primal program isA-REL(V ) and the dual program isA-REL-DUAL(V ).

We index these convex programs by input vectorsV as we will analyze their objectives when

the input vectors change by the capping algorithm. We letφA
f (V ) denote the (common) optimal

objective value of both convex programs with input vectorsV .

We prove the following guarantee about Algorithm 4.2. The proof along with some intuition

of Algorithm 4.2 appears in the appendix.

Lemma 4.3.1. For any input vectorsV = {v1, . . . , vn} ⊆ Rd and k ≥ d, if k ≥ 15 then the

capping algorithm returns a set of vectorsU = {u1, . . . un} such that

1. ‖ui‖22 ≤ Δ for all i ∈ [n].

2. For any (multi-)setS ⊆ [n], tr
((∑

i∈S viv
>
i

)−1
)
≤ tr

((∑
i∈S uiu

>
i

)−1
)

.

3. φA
f (U) ≤

(
1 + 3000∙d

k

) (
φA

f (V ) + 135∙d
Δ

)
.

Lemma 4.3.1 states that if an algorithm returns a good solution from capped vectors, then the

objective remains small after we map the solution back to the original (uncapped) input vectors.

Moreover, by choosing a sufficiently large capping lengthΔ, we may bound the increase in optimal

value of the natural convex programming relaxation after capping by a small factor. Optimizing

for Δ is to be done later.
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4.3.2 LocalSearch Algorithm

We now consider the local search algorithm with the capped vectors. The performance of the

algorithm is stated as follows.

Algorithm 4.3 Local search algorithm forA-DESIGN with capped vectors

Input: U = {u1, . . . , un} ⊆ Rd, d ≤ k ∈ N.
Let I be any (multi)-subset of[1, n] of sizek such thatX =

∑
i∈I uiu

>
i is nonsingular.

While ∃i ∈ I, j ∈ [1, n] such thattr
(
(X − uiu

>
i + uju

>
j )−1

)
< tr(X−1):

X = X − uiu
>
i + uju

>
j

I = I \ {i} ∪ {j}
Return(I,X)

Theorem 4.3.2.Let(I,X) be the solution returned by Algorithm 4.3. If||ui||22 ≤ Δ for all i ∈ [n],

tr(X−1) ≤ φA
f (U)




(

1−
d− 2

k

)

−

√
ΔφA

f (U)

k





−1

.

The proof of Theorem 4.3.2 is deferred to the appendix. We now analyze the modified local

search algorithm presented as Algorithm 4.4 with input vectorsV = {v1, . . . , vn} which may

contain vectors with long length using Theorem 4.3.2. LetI? be the set of indices of the vectors in

the optimal solution ofA-DESIGN with input vector setV and letφA(V ) = tr
((∑

i∈I? viv
>
i

)−1
)

be its objective. Observe thatφA
f (V ) ≤ φA(V ).

Algorithm 4.4 Modified local search algorithm forA-DESIGN

Input: V = {v1, . . . , vn}, d ≤ k ∈ N.
Let Δ = d

ε2φA(V )
.

Let U = {u1, . . . , un} be the output of Vector Capping Algorithm 4.2 with input(V, Δ).
Let I ⊆ [1, n], X =

∑
i∈I uiu

>
i be the output of Local Search Algorithm 4.3 with input(U, k).

ReturnI.

Theorem 4.3.3.For input vectorsV = {v1, . . . , vn} wherevi ∈ Rd and parameterk, let I be the
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solution returned by Algorithm 4.4. Ifk ≥ 2d
ε4

andε ≤ 0.001, then

tr





(
∑

i∈I

viv
>
i

)−1


 ≤ (1 + ε)φA(V ).

The (1 + ε)-approximation of Algorithm 4.4 is achieved by setting an appropriate capping

lengthΔ and combining the guarantees from Lemma 4.3.1 and Theorem 4.3.2.

Proof. By Theorem 4.3.2,

tr





(
∑

i∈I

uiu
>
i

)−1


 ≤ φA
f (U)



1−
d− 2

k
−

√
ΔφA

f (U)

k





−1

= φA
f (U)



1−
ε4

2
+

ε4

d
− ε

√
φA

f (U)

2φA(V )





−1

The last inequality follows sincek ≥ 2d
ε4

andΔ = d
ε2φA(V )

. By Lemma 4.3.1,

φA
f (U) ≤

(
1 + 1500ε4

) (
φA

f (V ) + 135ε2φA
f (V )

)
.

SinceφA
f (V ) ≤ φA(V ), we getφA

f (U) ≤ (1 + 1500ε4)(1 + 135ε2)φA(V ). Substituting in the

equation above, we get

tr





(
∑

i∈I

uiu
>
i

)−1


 ≤ φA(V )
(1 + 1500ε4)(1 + 135ε2)

1− ε4

2
+ ε4/d− ε

√
(1 + 1500ε4)(1 + 135ε2)/2

≤ (1 + ε)φA(V )

where the last inequality follows from the fact thatε < 0.001. By Lemma 4.3.1, we also have that
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tr
((∑

i∈I viv
>
i

)−1
)
≤ tr

((∑
i∈I uiu

>
i

)−1
)

. Hence,

tr





(
∑

i∈I

viv
>
i

)−1


 ≤ (1 + ε)φA(V ).

This finishes the proof of Theorem 4.3.3.

Algorithm 4.4 requires the knowledge of the optimum solution valueφA(V ). We can guess this

value efficiently by performing a binary search. The details appear in the appendix.

4.3.3 Instanceswith BadLocal Optima

In this section, we show that preprocessing input vectors to theA-DESIGN problem is required

for the local search algorithm to have any approximation guarantee. This is because a locally

optimal solution can give an arbitrarily bad objective value compared to the optimum. Hence, this

requirement applies regardless of implementations of the local search algorithm. We summarize

the result as follows.

Theorem 4.3.4.For anyk ≥ d ≥ 2, there exists an instance ofA-DESIGN, either with or without

repetitions, such that a locally optimal solution has an arbitrarily bad approximation ratio.

We note that any instance toA-DESIGN with repetitions can be used forA-DESIGN without

repetitions by makingk copies of each input vector. Therefore, it is enough to show example

of instances only inA-DESIGN with repetitions. For eachi, let ei be the unit vector in theith

dimension. In this section,N is a real number tending to infinity, and theA(N) ∼ B(N) notation

indicates thatlimN→∞
A(N)
B(N)

= 1. All asymptotic notions such as big-Oh are with respect toN →

∞. We first show the bad instance whenk ≥ d = 2. Thoughd = 2 seems a small case to consider,

the calculation presented is central to prove the main theorem later.

Lemma 4.3.5.There exists an instance ofA-DESIGN for k ≥ d = 2, with repetitions, such that a

locally optimal solution has an arbitrarily bad approximation ratio.
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The construction in Lemma 4.3.5 can be generalized tod > 2 dimensions by adding a vector

with an appropriate length to each additional dimension. The proof of Theorem 4.3.4 appears in

the appendix. We now prove the Lemma.

Proof. Let v1 = [1; 1
N2 ], v2 = [1;− 1

N2 ], w1 = [N4; 1
N

], w2 = [N4;− 1
N

], and let the input of

A-DESIGN be these four vectors. We first make straightforward calculations, summarized as the

following claim.

Claim 7. Letp, q be positive integers. Then,

tr
((

pv1v
>
1 + qv2v

>
2

)−1
)

=
p + q

4pq
N4 + O(1) (4.1)

tr
((

pv1v
>
1 + qv2v

>
2 + w1w

>
1

)−1
)

=
1

p + q
N4 + O(N) (4.2)

tr
((

pv1v
>
1 + qv2v

>
2 + w2w

>
2

)−1
)

=
1

p + q
N4 + O(N) (4.3)

tr
((

w1w
>
1 + w2w

>
2

)−1
)

=
N2

2
+ O(N−8) (4.4)

Proof. We will repeatedly use the formulatr











a b

c d






−1


 = a+d

ad−bc
. We have

tr
((

pv1v
>
1 + qv2v

>
2

)−1
)

= tr











p + q (p− q)N−2

(p− q)N−2 (p + q)N−4






−1




=
p + q + (p + q)N−4

(p + q)2N−4 − (p− q)2N−4
=

p + q

4pq
N4 + O(1)
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tr
((

pv1v
>
1 + qv2v

>
2 + w1w

>
1

)−1
)

= tr











N8 + p + q N 3 + (p− q)N−2

N3 + (p− q)N−2 N−2 + (p + q)N−4






−1




=
N 8 + O(1)

(p + q)N4 + O(N)
=

1

p + q
N4 + O(N)

The calculation fortr
((

pv1v
>
1 + qv2v

>
2 + w2w

>
2

)−1
)

is symmetric. Finally, we have

tr
(
w1w

>
1 + w2w

>
2

)−1
= tr











2N8 0

0 2N−2






−1


 =

N2

2
+

1

2N8

finishing theproof.

We now continue the proof of Lemma 4.3.5. Letp = bk
2
c, q = dk

2
e and consider the solution

S which hasp andq copies ofv1 andv2 respectively. By Claim 7, the current objective ofS is

tr
((

pv1v
>
1 + qv2v

>
2

)−1
)
∼ k

4pq
N4 and the objective ofS \ {vi} ∪ {wj} for any pairi, j ∈ {1, 2}

is 1
p+q−1

N4 + O(N) ∼ 1
k−1

N4. As k
4pq

N4 ≥ k
k2−1

N4 > 1
k−1

N4 for k ≥ 2, S is locally optimal.

However, consider another solutionS∗ which picksp and q copies ofw1 and w2. Since

tr
(
w1w

>
1 + w2w

>
2

)−1
= O(N2), by monotonicity oftr((∙)−1) under Loewner ordering, we must

have that the objective given byS∗ is also at mostO(N2), which is aΘ(N2)-factor smaller than

the objective value ofS. The result follows becauseN tends to infinity.

4.4 Proofs from Section 4.2

We use the notation〈A,B〉 for an inner product of two matricesA,B of the same size. We begin

by stating the Sherman-Morrison formula that is important in our calculations. We instantiate it

for symmetric matrices.
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Theorem 4.4.1.LetL be and× d invertible matrix andv ∈ Rd. Then

(
L + vv>

)−1
= L−1 −

L−1vv>L−1

1 + v>L−1v

Lemma 4.4.2. (Matrix Determinant Lemma, [Har97]) For any invertible matrixL ∈ Rd×d and

v ∈ Rd,

det(L + vv>) = det(L)(1 + v>L−1v)

We now detail the missing proofs.

Lemma 4.2.2.Let W = X−i = X − viv
>
i =

∑
j∈I\{i} vjv

>
j . To showτi ≤ 1, we make two cases

depending on whetherW is singular or not.

Case 1: W is non-singular.

τi = v>
i (W + viv

>
i )−1vi

= v>
i

(

W−1 −
W−1viv

>
i W−1

1 + v>
i W−1vi

)

vi

= v>
i W−1vi −

v>
i W−1viv

>
i W−1vi

1 + v>
i W−1vi

=
v>

i W−1vi + (v>
i W−1vi)

2 − (v>
i W−1vi)

2

1 + v>
i W−1vi

=
v>

i W−1vi

1 + v>
i W−1vi

< 1.

Last inequality follows from the fact thatv>
i W−1vi > 0 sinceW−1 is non-singular.

Case 2: W is singular. We have thatX is non-singular andW = X − viv
>
i is a singular matrix.

Let Y † denote the Moore-Penrose pseudo-inverse ofY for any matrixY . Observe thatX† = X−1.

From Theorem 1 [Mey73], we have that
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X−1 = W † −
W †viv

>
i (I −WW †)>

‖(I −WW †)vi‖22
−

(I −W †W )>viv
>
i W †

‖(I −W †W )>vi‖22

+
(1 + v>

i W †vi)(I −W †W )>viv
>
i (I −WW †)>

‖(I −W †W )>vi‖22‖(I −WW †)vi‖22

Now we use the fact that(I −WW †) and(I −W †W ) are projection matrices. Sincev>Pv =

‖Pv‖22 for any projection matrixP and vectorv, we obtain that

v>
i X−1vi = v>

i W †vi −

(
v>

i W †vi

) (
v>

i (I −WW †)>vi

)

‖(I −WW †)vi‖22
−

(
v>

i (I −W †W )>vi

)
v>

i W †vi

‖(I −W †W )>vi‖22

+
(1 + v>

i W †vi)v
>
i (I −W †W )>viv

>
i (I −WW †)>vi

‖(I −W †W )>vi‖22‖(I −WW †)vi‖22
= v>

i W †vi − v>
i W †vi − v>

i W †vi + (1 + v>
i W †vi)

= 1

as claimed.

We now show that
∑

i∈I τi = d. Indeed

∑

i∈I

τi =
∑

i∈I

v>
i X−1vi =

∑

i∈I

〈X−1, viv
>
i 〉 = 〈X−1,

∑

i∈I

viv
>
i 〉 = 〈X−1, X〉 = d

Similarly, we have

∑

i∈I

τijτji =
∑

i∈I

v>
i X−1vjv

>
j X−1vi =

∑

i∈I

〈X−1vjv
>
j X−1, viv

>
i 〉 = 〈X−1vjv

>
j X−1,

∑

i∈I

viv
>
i 〉

= 〈X−1vjv
>
j X−1, X〉 = v>

j X−1vj

For the last part, observe thatX−1 is symmetric and thusτij = τji. Moreover,
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τij = v>
i X−1vj = (X− 1

2 vi)
>(X− 1

2 vj) ≤ ‖X
− 1

2 vi‖2‖X
− 1

2 vj‖ =
√

τiτj

where the inequality follows from Cauchy-Schwarz.

4.4.1 LocalSearchfor D-DESIGN without Repetitions

In this section, we focus on the variant ofD-DESIGN where repetitions of vectors are not allowed,

and show the approximation guarantee of the local search in this setting. In comparison toD-

DESIGN with repetitions, the relaxation now has an upper bound onxi and extra nonnegative

variablesηi on the dual. See the relaxation and its dual in Preliminaries.

The local search algorithm 4.1 is modified by considering a swap where elements to be included

in the set must not be in the current set. We prove a similar approximation ratio of the local search

algorithm for the without repetition setting.

Theorem 4.4.3.Let X be the solution returned by the local search algorithm. Then for allk ≥

d + 1,

det(X) ≥

(
k − d

k

)d

ed∙φD
f

and therefore,

det(X)
1
d ≥

k − d

k
∙ φD.

We note that in the casek = d, the design problem without repetition is identical to with

repetition since the optimal solution must be linearly independent, and thus the bound from with

repetitions of Theorem 4.2.1 applies to obtaind-approximation.

The proof of Theorem 4.4.3 is similar toD design requires a different bound onτj from the

setting with repetitions to set a feasible dual solution, since the local search condition no longer

applies to all vectorsj ∈ [n] but only for those not in output setI. We first give a bound ofτj for
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j /∈ I.

Lemma 4.4.4.For anyj /∈ S and anyi ∈ S such thatτi < 1,

τj ≤
τi

1− τi

.

Proof. We claim that the local search condition implies that for anyi ∈ I andj /∈ I, we have

τj − τiτj + τijτji ≤ τi. (4.5)

The proof of the claim is identical to that of Claim 6. Hence, we have

τi ≥ τj − τiτj + τ 2
ij ≥ τj − τiτj (4.6)

which finishes the proof of theLemma.

We now prove the main Theorem.

Theorem 4.4.3.As in the proof of Theorem 4.2.1, we construct a feasible solution to the (D-REL-DUAL )

of the objective value of at most1
d
log det(X) + log k

k−d
which is sufficient as a proof of the theo-

rem. Denoteτmin = minj∈I v>
j Y −1vj. Let

Y = αX, μ =
k

α(k − d)
τmin, ηj =






0, j /∈ I

τj−τmin

α
j ∈ I

whereα > 0 will be fixed later. We first check the feasibility of the solution. It is clear by definition

thatμ, ηj ≥ 0. Forj /∈ I, by Lemma 4.4.4, we have

v>
j Y −1vj =

1

α
∙ τj ≤

1

α
∙

τmin

1− τmin

≤
1

α
∙

k

k − d
τmin = μ + ηj
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where the second inequality follows fromτmin ≤ 1
k

∑
i∈I τi = d

k
. For i ∈ I, we have

μ + ηi ≥
1

α
∙ (τmin + τi − τmin) = v>

i Y −1vi

Therefore, the solution is dual feasible. This solution obtains the objective of1
d
log det(αX)− 1+

k
d
μ + 1

d

∑n
i=1 ηi which is equal to

=
1

d
log det(αX)− 1 +

k

d

k

α(k − d)
τmin +

1

αd

∑

i∈I

(τi − τmin)

=
1

d
log det(αX)− 1 +

k2

αd(k − d)
τmin +

1

αd
(d− kτmin)

=
1

d
log det X + log α− 1 +

1

α

(
k

k − d
τmin + 1

)

≤
1

d
log det X + log α− 1 +

k

α(k − d)

where the last inequality is byτmin ≤ d
k
. Finally, we setα = k

k−d
to obtain the objective value of

dual

1

d
log det(X) + log

k

k − d
− 1 + 1 =

1

d
log det(X) + log

k

k − d

asrequired.

4.5 Proofs from Section 4.3

4.5.1 Proofof Performanceof ModifiedLocalSearchAlgorithm for A-DESIGN

Proof of Theorem 4.3.2

We first outline the proof of Theorem 4.3.2. Let(I,X) be the returned solution of the Algo-

rithm 4.3. Observe thatX is invertible sinceX is invertible at the beginning andtr(X−1) only
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decreases in the later iterations. Letτij = u>
i X−1uj , hij = u>

i X−2uj , τi = τii, hi = hii, and

β = tr(X−1). Since,X is a symmetric matrix,X−1 is also a symmetric matrix and therefore

τij = τji for eachi, j ∈ [n].

Notations For convenience, we restate the notations used in this section.

• V : Input to Modified Local Search Algorithm 4.4.

• I?: indices of the vectors in the optimal solution ofA-DESIGN with input vector setV .

• φA(V ) = tr
((∑

i∈I? viv
>
i

)−1
)

.

• U : Output of Vector Capping Algorithm 4.2 and input to Local Search Algorithm with

capped vectors 4.3.

• Δ : For everyi ∈ [1, n], ||ui||22 ≤ Δ.

• (I,X) : Output of Local Search Algorithm with capped vectors 4.3 on input(U, k).

• φA
f (U), andφA

f (V ) denote the (common) optimal value of objective values of the convex

program with input vectors fromV andU respectively.

• For i, j ∈ [1, n], τij = u>
i X−1uj , hij = u>

i X−2uj.

• For i ∈ [n], τi = τii, hi = hii.

Following lemma shows some standard connections betweenτij , τi, hij andhi’s. Proof of the

lemma is presented in Section 4.5.1.

Lemma 4.5.1.We have the following.

1. For anyi ∈ I, we haveτi ≤ 1. Moreover, for anyi ∈ I, τi = 1 if and only ifX − viv
>
i is

singular.
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2. We have
∑

i∈I τi = d.

3. For anyi, j ∈ [n], hi(1 + τj)− 2τijhij ≥ 0.

4. For anyj ∈ [n], we have
∑

i∈I τ 2
ij = hj.

5. We have
∑

i∈I hi = β.

6. For anyj ∈ [n], we have
∑

i∈I τijhij = hj.

7. For anyj ∈ [n], we haveτj ≤
√

hj||uj||2.

8. For anyi ∈ [n], let X−i = X − uiu
>
i . If X−i is invertible, then for anyj ∈ [n], we have

• u>
j X−1

−i uj =
τj+τ2

ij−τiτj

1−τi
, and

• u>
j X−2

−i uj = hj +
hiτ

2
ij

(1−τi)2
+

2τijhij

1−τi
.

Next lemma shows a lower bound onhj in terms ofβ andφA
f (U) by constructing a dual feasible

solution.

Lemma 4.5.2.We havemaxj∈[n] hj ≥
β2

k∙φA
f (U)

.

Next lemma shows an upper bound onhj in terms ofβ and τj using the local optimality

condition.

Lemma 4.5.3.For anyj ∈ [n], hj

1+τj
≤ β

k−d+2
.

Before we prove these lemmas, we complete the proof of Theorem 4.3.2.

Theorem 4.3.2.By Lemma 4.5.3, for anyj ∈ [n], hj

1+τj
≤ β

k−d+2
. By Lemma 4.5.1,τj ≤

√
hj||uj||2 ≤

√
hjΔ. Hence, for anyj ∈ [n],

hj

1 +
√

hjΔ
≤

β

k − d + 2
.

By Lemma 4.5.2, there existsj ∈ [n] such thathj ≥
β2

k∙φA
f (U)

. Now we note the following claim.
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Claim 8. f(x) = x
1+c

√
x

is a monotonically increasing function forx ≥ 0 if c ≥ 0.

Proof. f ′(x) = 1
1+c

√
x

+ x ∙ −1
(1+c

√
x)2
∙ c

2
√

x
= 2+c

√
x

(1+c
√

x)2
which is always positive forx ≥ 0 if

c ≥ 0.

Hence, we have

β2

k∙φA
f (U)

1 +
√

β2

k∙φA
f (U)

Δ
≤

β

k − d + 2

k − d + 2

k

β

φA
f (U)

≤ 1 +

√
ΔφA

f (U)

k

β

φA
f (U)



1−
d− 2

k
−

√
ΔφA

f (U)

k



 β

φA
f (U)

≤ 1

tr(X−1) = β ≤ φA
f (U)



1−
d− 2

k
−

√
ΔφA

f (U)

k





−1

.

This finishes the proof of Theorem 4.3.2.

Next, we prove Lemma 4.5.2 and Lemma 4.5.3.

Lemma 4.5.2.We prove the lemma by constructing a feasible solution toA-REL-DUAL(U). Let

Y = γX−2, λ = max
j∈[n]

u>
j Y uj = γ max

j∈[n]
hj

whereγ > 0 will be fixed later. Then,(Y, λ) is a feasible solution toA-REL-DUAL(U). Hence,

φA
f (U) ≥ 2 tr

((
γX−2

)1/2
)
− kγ max

j∈[n]
hj = 2

√
γβ − kγ max

j∈[n]
hj .

Substitutingγ =
(

β
k maxj∈[n] hj

)2

, we getφA
f (U) ≥ β2

k maxj∈[n] hj
. This gives usmaxj∈[n] hj ≥

β2

kφA
f (U)

which is the desired inequality in Lemma 4.5.2.
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Lemma 4.5.3.We start the proof by showing an inequality implied by the local optimality of the

solution.

Claim 9. For anyi ∈ I, j ∈ [n],

hi(1 + τj)− hj(1− τi)− 2τijhij ≥ 0 (4.7)

Proof. For i ∈ I, let X−i = X − uiu
>
i . First consider the case whenX−i is singular. From

Lemma 4.5.1,τi = 1 andhi(1 + τj)− 2τijhij ≥ 0. Hence,

hi(1 + τj)− hj(1− τi)− 2τijhij ≥ 0.

Now, consider the case whenX−i is non-singular. By local optimality condition, we have that

for anyi ∈ I, j ∈ [n],

β ≤ tr
((

X−i + uju
>
j

)−1
)

By Sherman-Morrison formula,

tr
((

X−i + uju
>
j

)−1
)

= tr(X−1
−i )−

u>
j X−2

−i uj

1 + u>
j X−iuj

= tr(X−1) +
u>

i X−2ui

1− u>
i X−1ui

−
u>

j X−2
−i uj

1 + u>
j X−iuj

Hence, local optimality ofI implies that for anyi ∈ I, j ∈ [n],

β ≤ tr(X−1) +
u>

i X−2ui

1− u>
i X−1ui

−
u>

j X−2
−i uj

1 + u>
j X−iuj

(4.8)

By Lemma 4.5.1, we haveu>
j X−1

−i uj =
τj+τ2

ij−τiτj

1−τi
andu>

j X−2
−i uj = hj +

hiτ
2
ij

(1−τi)2
+

2τijhij

1−τi
.
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Substituting these andtr(X−1) = β, u>
j X−2uj = hj, andu>

j X−1uj = τj in equation (4.8), we get

β ≤ β +
hi

1− τi

−
hj +

hiτ
2
ij

(1−τi)2
+

2τijhij

1−τi

1 +
τj+τ2

ij−τiτj

1−τi

0 ≤
hi

1− τi

−
hj(1− τi)

2 + hiτ
2
ij + 2(1− τi)τijhij

(1− τi)(1− τi + τj + τ 2
ij − τiτj)

0 ≤
hi

1− τi

−
hiτ

2
ij

(1− τi)(1− τi + τj + τ 2
ij − τiτj)

−
hj(1− τi)

2 + 2(1− τi)τijhij

(1− τi)(1− τi + τj + τ 2
ij − τiτj)

0 ≤
hi(1− τi + τj + τ 2

ij − τiτj − τ 2
ij)

(1− τi)(1− τi + τj + τ 2
ij − τiτj)

−
hj(1− τi) + 2τijhij

1− τi + τj + τ 2
ij − τiτj

0 ≤
hi(1 + τj)

1− τi + τj + τ 2
ij − τiτj

−
hj(1− τi) + 2τijhij

1− τi + τj + τ 2
ij − τiτj

0 ≤ hi(1 + τj)− hj(1− τi)− 2τijhij

Last inequality follows from the fact that1− τi + τj− τiτj + τ 2
ij = (1− τi)(1+ τj)+ τ 2

ij > 0 which

follows from the fact thatτi < 1 (Lemma 4.5.1 andX−i is invertible). This concludes the proof of

claim 9.

Next, we sum up equation (4.7) from claim 9 for alli ∈ Z and get

(1 + τj)
∑

i∈I

hi − hj(|I| −
∑

i∈I

τi)− 2
∑

i∈I

τijhij ≥ 0

By Lemma 4.5.1,
∑

i∈I hi = β,
∑

i∈I τi = d, and
∑

i∈I τijhij = hj. We also know that|I| = k

throughout the algorithm. Substituting these in the equation above we get,(1+ τj)β−hj(k−d)−

2hj ≥ 0 or equivalently,
hj

1 + τj

≤
β

k − d + 2
.

This finishes the proof of Lemma 4.5.3.
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The Capping Algorithm and the Proof of Lemma 4.3.1

Some intuition of the capping algorithm. Section 4.3.3 shows an example where local search

outputs a solution with very large cost, thus showing that local search does not provide any ap-

proximation algorithm. The failure of local search algorithm is the presence of extremely long

vectors (||v||22 much larger than A-optimum) which leads to “skewed" eigenvectors and eigenval-

ues. Moreover, we were able to show that this is the only bottleneck. That is, if all vector norms

are small (compared to A-optimum), solution output by the local search algorithm has cost at most

(1 + ε) times the fractional optimum.

The capping algorithm should then satisfy the following(s): Given an instance with arbitrary

length vectors, output a new instance such that

1. All vectors in the new instance have small length

2. Fractional optimum of the new instance does not increase by more than1 + ε factor of the

old fractional optimum

3. Any integral solution in the new instance can be translated into an integral solution in the old

instance with the same or lower cost.

If we can get such a procedure, we run the local search on the new instance and get an integral

solution with cost at most(1 + ε) times the fractional optimum of the new solution. Combining

with the properties above, we can then get an integral solution in the old instance with cost at most

(1 + ε)2 of the old fractional optimum.

We note that a more natural capping algorithm where we pick the longest vector, scale this

vector down, and project all other vectors into the space orthogonal to the large vector satisfies

properties (1) and (2) but not (3). That is, given an integral solution in the new instance, we can

not always find an integral solution in the old instance with roughly the same cost.
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We now proof of Lemma 4.3.1, which says that our capping algorithm satisfies three properties

we want.

Lemma 4.3.1.For ease of notation, we consider the equivalent algorithm of Algorithm 4.2.

Algorithm 4.5 Capping vectors length forA-DESIGN

Input: V = {v1, . . . , vn} ⊆ Rd, parameterΔ.
For i ∈ [1, n], w0

i := vi, ` = 0.
While∃i ∈ [1, n], ||wl

i||
2
2 > Δ:

t` = argmaxi∈[1,n] ||w
l
i||2.

% For all vectors, scale the component along withwt direction.

For j ∈ [1, n], w`+1
j =

(

Id − 1
2

w`
t`

(w`
t`

)>

||w`
t`
||22

)

w`
j

` = ` + 1.
For j ∈ [1, n], uj = w`

j.
ReturnU = {u1, . . . , un} ⊆ Rd

First observe that the length of the largest vector reduces by a constant factor and length of any

vector does not increase. Thus the algorithm ends in a finite number of iterations. Observe that the

first property is trivially true when the algorithm returns a solution. For the second property, we

show that the objective value of any setS only increases over the iterations. In particular, we show

the following claim.

Claim 10. For any setS ⊂ [n] and anỳ ≥ 0,

tr





(
∑

i∈S

w`
i (w

`
i )

>

)−1


 ≤ tr





(
∑

i∈S

w`+1
i (w`+1

i )>

)−1
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Proof. Let Z =

(

Id×d − 1
2

w`
t`

(w`
t`

)>

||w`
t`
||22

)

tr





(
∑

i∈S

w`+1
i (w`+1

i )>

)−1


 = tr





(

Z
∑

i∈S

w`
i (w

`
i )

>Z>

)−1




= tr



Z−1

(
∑

i∈S

w`
i (w

`
i )

>

)−1

Z−1





=

〈

Z−2,

(
∑

i∈S

w`
i (w

`
i )

>

)−1〉

Observe thatZ has all eigenvalues1 except for one which is1
2
. ThusZ−1 andZ−2 have all

eigenvalues at least one and in particularZ−2 � I. Hence,

tr





(
∑

i∈S

w`+1
i (w`+1

i )>

)−1


 ≥ tr





(
∑

i∈S

w`
i (w

`
i )

>

)−1




asrequired.

To prove the last property, we aim to obtain a recursion on the objective value of the convex

program over the iterations. LetW ` = {w`
1, . . . , w

`
n} be the set of vectors at the end of`th iteration

and letα?
` = φA

f (W `) denote the objective value of the convex program with the vectors obtained

at the end of̀ th iteration. We divide the iterations in to epochs where in each epoch the length

of the maximum vector drops by a factor of2. For ease of notation, we letp = 0 be the last

epoch andp = 1 to be the second last epoch and so on. For any integerp ≥ 0, we let rp :=

argmiǹ maxi∈[n] ‖w`
i‖

2
2 ≤ 2p ∙Δ be the last iteration ofpth epoch. Thus in thepth epoch the length

of the largest vector is in the interval[2p ∙Δ, 2p+1 ∙Δ). LetT denote the first epoch and thusrT = 0.

Next lemma bounds the increase in the relaxation value in each iteration. The bound depends on

which epoch does the iteration lies in.
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Lemma 4.5.4.For every` ∈ [rp, rp−1), we have

α?
`+1 ≤

(

1 +
2−3p/4

k

)(

α?
l +

8

2p/4Δ

)

.

Next lemma bounds the number of iterations in thepth epoch.

Lemma 4.5.5.For everyp ≥ 1, we haverp−1 − rp + 1 ≤ 8
3
d.

We first see the proof of last claim of Lemma 4.3.1 using Lemma 4.5.4 and Lemma 4.5.5 and

then prove these lemmas.

Using Lemmas 4.5.4 and 4.5.5, we bound the increase in relaxation value in each epoch.

Claim 11. For everyp ≥ 1, we have

α?
rp−1
≤

(

1 +
2−3p/4

k

) 8
3
d(

α?
rp

+
64d

3 ∙ 2p/4Δ

)

.

Proof. From Lemma 4.5.4, we have

α?
rp−1
≤

(

1 +
2−3p/4

k

)rp−1−rp+1

α?
rp

+
8

2p/4Δ

(
rp−1−rp+1∑

i=1

(

1 +
2−3p/4

k

)i
)

≤

(

1 +
2−3p/4

k

)rp−1−rp+1(

α?
rp

+
8

2p/4Δ
(rp−1 − rp + 1)

)

≤

(

1 +
2−3p/4

k

)rp−1−rp+1(

α?
rp

+
8

2p/4Δ
(rp−1 − rp + 1)

)

≤

(

1 +
2−3p/4

k

) 8
3
d(

α?
rp

+
64d

3 ∙ 2p/4Δ

)

(Lemma 4.5.5)

asrequired.

Solving the recurrence in Claim 11, we get a bound on the total increase in the relaxation cost

throughout the algorithm.
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α?
r0
≤

(

Π>
p=0

(

1 +
2−3p/4

k

) 8
3
d
)(

α?
rT

+
T∑

p=0

64d

3 ∙ 2p/4Δ

)

≤

(

Π>
p=0

(

1 +
2−3p/4

k

)) 8
3
d(

α?
rT

+
21/4

21/4 − 1

64d

3Δ

)

≤

(

Π>
p=0

(

1 +
2−p/2

k

)) 8
3
d(

α?
rT

+
135d

Δ

)

(4.9)

Claim 12. For anyk ≥ 15,

Π∞
p=0

(

1 +
2−3p/4

k

)

≤ 1 +
3

k
.

Proof.

Π∞
p=0

(

1 +
2−3p/4

k

)

= 1 +
1

k

∞∑

p=0

2−3p/4 +
1

k2

∞∑

p1=0

∞∑

p2=0

2−3p1/42−3p2/4

+
1

k3

∞∑

p1=0

∞∑

p2=0

∞∑

p3=0

2−3p1/4−3p2/4−3p3/4 . . .

= 1 +

∑∞
p=0 2−3p/4

k
+

(∑∞
p=0 2−3p/4

k

)2

+

(∑∞
p=0 2−3p/4

k

)3

+ . . .

≤ 1 +
2.47

k
+

(
2.47

k

)2

+

(
2.47

k

)3

+ . . .

=
1

1− 2.47/k

≤ 1 +
3

k

Last inequality follows sincek ≥ 15.

Substituting bound from claim 12 in Equation (4.9), we get

α?
r0
≤

(

1 +
3

k

) 8
3
d(

α?
rT

+
135d

k

)

≤

(

1 + e8 d

k

)(

α?
rT

+
135d

k

)
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Last inequality follows from the fact that(1 + a/x)y ≤ 1 + ea x
y

if x > y > 0 anda ≥ 1.

By definition,rT = 0. Hence,α?
0 = α?

rT
= φA

f (V ). Also, by definitionα?
r0

= φA
f (U). Hence,

φA
f (U) ≤

(

1 + e8 d

k

)(

φA
f (V ) +

135d

Δ

)

≤

(

1 + 3000
d

k

)(

φA
f (V ) + 135

d

Δ

)

.

This finishes the proof of Lemma 4.3.1.

To complete the missing details in the proof of Lemma 4.3.1, we now prove Lemmas 4.5.4

and 4.5.5.

Lemma 4.5.4.For simplicity of exposition, we make some simplifying assumptions. Without loss

of generality, we assume thatt` = 1, i.e., the longest vector is the first vector in this iteration.

Also, since trace is invariant under rotation of basis, we may assume thatw`
1 =
√

γe1 for some

non-negative numberγ wheree1 =

(

1 0 . . . 0

)>

is the first standard vector. Hence,

w`+1
j =

(

Id×d −
1

2
e1e

>
1

)

w`
j .

Since,w`
1 is the largest vector in this iteration and` ∈ [rp, rp−1), we have

2pΔ ≥ γ > 2p−1Δ. (4.10)

Let x be the optimal solution forA-REL(w`
1, . . . , w

`
n). We construct a feasible solutiony for

A-REL(w`+1
1 , . . . , w`+1

n ) with objective at most as required in the lemma. Letδ ≥ 0 be a constant

that will be fixed later. Let

yi =






k
k+δ

(δ + x1) i = 1

k
k+δ

xi i ∈ [2, n]

Claim 13. y is a feasible solution toA-REL(w`+1
1 , . . . , w`+1

n ).
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Proof. Since,x is a feasible solution ofA-REL(w`
1, . . . , w

`
n), we know that

∑n
i=1 xi ≤ k. Thus

n∑

i=1

yi =
k

k + δ
δ +

k

k + δ

n∑

i=1

xi ≤
k

k + δ
δ +

k

k + δ
k ≤ k.

Clearlyy ≥ 0 and thus it isfeasible.

Now we bound the objective value of the solutiony. Let

X =
n∑

i=1

xiw
`
i (w

`
i )

>, Y =
n∑

i=1

yiw
`+1
i (w`+1

i )>.

Claim 14. For anyδ > 0, tr(Y −1) ≤ k+δ
k

(
tr(X−1) + 4

δγ

)
.

Before we prove Claim 14, we complete the proof of Lemma 11.

From Equation (4.10), we haveγ ≥ 2p−1Δ and substitutingδ = 2−p/2 in Claim 14 we get,

tr(Y −1) ≤

(

1 +
2−p/2

k

)(

tr(X−1) +
8

2p/2Δ

)

.

Since,x is an optimal solution toA-REL(w`
1, . . . , w

`
n), we haveα?

` = φA
f (w`

1, . . . , w
`
n) =

tr(X−1). Moreover, sincey is a feasible solution toA-REL(w`+1
1 , . . . , w`+1

n ), we have

α?
`+1 = φA

f (w`+1
1 , . . . , w`+1

n ) ≤ tr(Y −1) ≤

(

1 +
2−p/2

k

)(

α?
` +

8

2p/2Δ

)

.

Hence, it only remains to show the proof of Claim 14.
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Claim 14. Let X =
∑n

i=1 xiw
`
i (w

`
i )

> =






p q̄>

q̄ R




 wherep ∈ R, q̄ ∈ Rd, R ∈ Rd−1×d−1. Then

k + δ

k
Y = δw`+1

1 (w`+1
1 )> +

n∑

i=1

xiw
`+1
i (w`+1

i )>

=

(

Id×d −
1

2
e1e

>
1

)(

δw`
1(w

`
1)

> +
n∑

i=1

w`
i (w

`
i )

>

)(

Id×d −
1

2
e1e

>
1

)>

=






1
2

0̄>

0̄ I(d−1)×(d−1)











p + δγ q̄>

q̄ R











1
2

0̄>

0̄ I(d−1)×(d−1)






=






1
4
(p + δγ) 1

2
q̄>

1
2
q̄ R






SinceX is positive definite, we must havep > 0, R is also positive definite and more over

p− q̄>R−1q̄ > 0 (see Proposition 2.8.4 [Ber05]).

Fact 4.5.6. (Block Inversion formula) ForA ∈ Ra×a, D ∈ Rd×d, B ∈ Ra×d, C ∈ Rd×a such that




A B

C D




 is invertible, we have






A B

C D






−1

=






(A− BD−1C)−1 −(A− BD−1C)−1BD−1

−(D − CA−1B)−1CA−1 (D − CA−1B)−1






Applying block inversion formula onX, we get

X−1 =






1
p−q̄>R−1q̄

. . .

. . .
(
R− 1

p
q̄q̄>
)−1






Since,X is a positive semi-definite matrix,X−1 is also a positive semi-definite matrix. Hence,
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principle submatrices are positive semidefinite. In particular,

p− q̄>R−1q̄ ≥ 0. (4.11)

and,

R−
1

p
q̄q̄> � 0(d−1)×(d−1) (4.12)

Next, let us computetr(X−1).

tr(X−1) =
1

p− q̄>R−1q̄
+ tr

((

R−
1

p
q̄q̄>
)−1

)

≥ tr

((

R−
1

p
q̄q̄>
)−1

)

. (4.13)

Applying block-inversion formula tok+δ
k

Y , we get

(
k + δ

k
Y

)−1

=






(
1
4
(p + δγ)− 1

4
q̄>R−1q̄

)−1
. . .

. . .
(
R− 1

(p+δγ)/4
1
4
q̄q̄>
)−1






Hence,
k

k + δ
tr
(
Y −1

)
=

4

δγ + p− q̄>R−1q̄
+ tr

((

R−
1

p + δγ
q̄q̄>
)−1

)

Claim 15.
4

δγ + p− q̄>R−1q̄
≤

4

δγ

Proof. By Equation (4.11),p− q̄>R−1q̄ ≥ 0. Hence, the inequality trivially follows.

Claim 16.

tr

((

R−
1

p + δγ
q̄q̄>
)−1

)

≤ tr

((

R−
1

p
q̄q̄>
)−1

)
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Proof. Since,δ, α ≥ 0, 1
p+δγ

≤ 1
p
. Hence,

1

p + δγ
q̄q̄> �

1

p
q̄q̄>

−
1

p + δγ
q̄q̄> � −

1

p
q̄q̄>

R−
1

p + δγ
q̄q̄> � R−

1

p
q̄q̄>

(

R−
1

p + δγ
q̄q̄>
)−1

�

(

R−
1

p
q̄q̄>
)−1

tr

((

R−
1

p + δγ
q̄q̄>
)−1

)

≤ tr

((

R−
1

p
q̄q̄>
)−1

)

Applying the above two claims, we get

k

k + δ
tr
(
Y −1

)
≤

104

δγ
+ tr

((

R−
1

p
q̄q̄>
)−1

)

k

k + δ
tr
(
Y −1

)
≤

104

δγ
+ tr(X−1) (eq (4.13))

tr(Y −1) ≤
k + δ

k

(

tr(X−1) +
104

δγ

)

.

This finishes the proof of Claim 14.

Proof of Claim 14 also finishes the proof of Lemma 4.5.4.

Proof. (Lemma 4.5.5) By definition ofrp andrp−1, we know that for anỳ ∈ [rp, rp−1),

2p−1Δ ≤ max
i∈[n]
||w`

i ||
2
2 ≤ 2pΔ
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Let Mrp = Id×d, Rrp = Id×d and for` ∈ [rp, rp−1), let

M`+1 =

(

Id×d −
1

2

w`
t`
(w`

t`
)>

||w`
t`
||22

)

M`, R`+1 = MT
`+1M`+1.

For ` ∈ [rp, rp−1), consider the potential functiontr(R`). We show the following properties about

this potential function:

Claim 17. Let M`, R` be as defined above for` ∈ [rp, rp−1). Then,tr(Rrp) = d and for ` ∈

[rp, rp−1),

• tr(R`) ≥ 0, and

• tr(R`+1) ≤ tr(R`)− 3
8
.

Using Claim 17, it is easy to see thatrp−1 − rp + 1 ≤ 8
3
d. Hence, to prove Lemma 4.5.5, it is

enough to prove Claim 17.

Proof. (Claim 17) Since,Rrp = Id×d, tr(Rrp) = d is trivially true. Also, for anỳ ∈ [rp, rp−1),

R` = M>
` M` which is positive semidefinite. Hence,tr(R`) ≥ 0 for any ` ∈ [rp, rp−1). For

` ∈ [rp, rp−1),

R`+1 = M>
`+1M`+1 = M>

`

(

Id×d −
1

2

w`
t`
(w`

t`
)>

||w`
t`
||22

)>(

Id×d −
1

2

w`
t`
(w`

t`
)>

||w`
t`
||22

)

M`

Matrix

(

Id×d − 1
2

w`
t`

(w`
t`

)>

||w`
t`
||22

)

is symmetric. Hence,

R`+1 = M>
`

(

Id×d −
w`

t`
(w`

t`
)>

||w`
t`
||22

+
1

4

w`
t`
(w`

t`
)>

||w`
t`
||22

w`
t`
(w`

t`
)>

||w`
t`
||22

)

M`

= M>
`

(

Id×d −
w`

t`
(w`

t`
)>

||w`
t`
||22

+
1

4

w`
t`
(w`

t`
)>

||w`
t`
||22

)

M`

= M>
` M` −

3

4

(M>
` w`

t`
)(w`

t`
)>M`

||w`
t`
||22

= R` −
3

4

(M>
` w`

t`
)(M>

` w`
t`
)>

||w`
t`
||22
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By definitionw`
t`

= M`w
rp

t`
. Hence,

R`+1 = R` −
3

4

(M>
` M`w

rp

t`
)(M>

` M`w
rp

t`
)>

||w`
t`
||22

= R` −
3

4

(R`w
rp

t`
)(R`w

rp

t`
)>

||w`
t`
||22

And the trace is

tr(R`+1) = tr

(

R` −
3

4

(R`w
rp

t`
)(R`w

rp

t`
)>

||w`
t`
||22

)

= tr(R`)−
3

4

||R`w
rp

t`
||22

||w`
t`
||22

By Cauchy-Shwarz inequality,||u||22 ≥ (vT u)2/||v||22. Substitutingu = R`w
rp

t`
andv = w

rp

t`
, we

get

tr(R`+1) ≤ tr(R`)−
3

4

(
(w

rp

t`
)>R`w

rp

t`

)2

||wrp

t`
||22 ∙ ||w

`
t`
||22

= tr(R`)−
3

4

(
(w

rp

t`
)>M>

` M`w
rp

t`

)2

||wrp

t`
||22 ∙ ||w

`
t`
||22

= tr(R`)−
3

4

||M`w
rp

t`
||42

||wrp

t`
||22||w

`
t`
||22

= tr(R`)−
3

4

||w`
t`
||42

||wrp

t`
||22||w

`
t`
||22

= tr(R`)−
3

4

||w`
t`
||22

||wrp

t`
||22

Since,̀ ∈ [rp, rp−1), ||w`
t`
||22 = maxi∈[n] ||w`

i ||
2
2 ≥ 2p−1Δ. Also, by definition ofrp, ||w

rp

t`
||22 ≤

maxi∈[n] ||w
rp

i ||
2
2 ≤ 2pΔ. Hence,

tr(R`+1) ≤ tr(R`)−
3

4

2p−1Δ

2pΔ
= tr(R`)−

3

8
.

asdesired.

Hence, the proof of Lemma 4.5.5 iscompleted.

Proof of Lemma 4.5.1

Lemma 4.5.1.Proof of first and second statement is same as that in Lemma 4.2.2. So, we start by

proving thathi(1 + τj)− 2τijhij ≥ 0.

135



Claim 18. For anyj ∈ [n], X−1/2uju
>
j X−1/2 � τjId.

Proof. Since,X is a symmetric matrix,X−1 andX−1/2 are also symmetric matrices. Hence, if

q = X−1/2uj, thenX−1/2uju
>
j X−1/2 = qq>. Such a matrix has one non-zero eigenvalue equal to

||q||22 = u>
j X−1uj = τj. Hence,X−1/2uju

>
j X−1/2 � τjId.

Next, we use this to derive further inequalities.

X−1/2uju
>
j X−1/2 � τjId

2X−1/2uju
>
j X−1/2 � 2τjId

2X−1/2uju
>
j X−1/2 � (1 + τj)Id (τj ≤ 1, j ∈ [n])

X−1/2X−1/2uju
>
j X−1/2X−3/2 � X−1/2(1 + τj)X

−3/2 (X−1/2, X−3/2 are PSD)

2X−1uju
>
j X−2 � (1 + τj)X

−2

If A � B, thenv>Av ≤ v>Bv for all v. Hence,u>
i (2X−1uju

>
j X−2 ≤ (1 + τj)X

−2)ui ≤ 0. Or in

other words,hi(1 + τi)− 2τijhij ≥ 0.

Next, we show that
∑

i∈I τ 2
ij = hj.

∑

i∈I

τ 2
ij =

∑

i∈I

u>
i X−1uju

>
i X−1uj =

∑

i∈I

u>
i X−1uju

>
j X−1ui

=
∑

i∈u

〈X−1uju
>
j X−1, uiu

>
i 〉

= 〈X−1uju
>
j X−1,

∑

i∈Z

uiu
>
i 〉

= 〈X−1uju
>
j X−1, X〉

= 〈u>
j X−1, XX−1u>

j 〉

= 〈u>
j X−1, u>

j 〉 = u>
j X−1uj = hj
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Next, we show that
∑

i∈I hi = β.

∑

i∈I

hi =
∑

i∈Z

u>
i X−2ui

=
∑

i∈I

〈X−2, uiu
>
i 〉

= 〈X−2,
∑

i∈I

uiu
>
i 〉 = 〈X−2, X〉

= 〈X−1, X−1X〉

= 〈X−1, Id〉 = tr(X−1)

Next, we show that
∑

i∈I τijhij = hj.

∑

i∈I

τijhij =
∑

i∈I

u>
i X−1uju

>
i X−2uj =

∑

i∈I

u>
i X−1uju

>
j X−2ui

=
∑

i∈I

〈X−1uju
>
j X−2, uiu

>
i 〉

= 〈X−1uju
>
j X−2,

∑

i∈Z

uiu
>
i 〉 = 〈X−1uju

>
j X−2, X〉

= 〈u>
j X−2, u>

j X−1X〉

= 〈u>
j X−2, uj〉 = hj

Next, we show thatτj ≤
√

hj||uj||2.

√
hj||uj||2 =

√
u>

j X−2uj||uj||2

=
√
||X−1uj||22||uj||2 = ||X−1uj||2||uj||2

≥ u>
j X−1uj = τj .

Here, the last inequality follows from Cauchy-Schwarz inequality: for anyu, v ∈ Rd, u>v ≤
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||u||2||v||2.

Next, we show the last two equalities. Fori ∈ [n], X−i = X − uiu
>
i . Let j ∈ [n]. By

Sherman-Morrison formula,

X−1
−i = X−1 +

X−1uiu
>
i X−1

1− u>
i X−1ui

= X−1 +
X−1uiu

>
i X−1

1− τi

(4.14)

Hence,

u>
j X−1

−i uj = u>
j X−1uj +

u>
j X−1uiu

>
i X−1uj

1− τi

= τj +
u>

j X−1uiu
>
i X−1uj

1− τi

= τj +
τij ∙ τij

1− τi

=
τj + τ 2

ij − τiτj

1− τi

Squaring the terms in equation (4.14), we get

X−2
−i = X−2 +

X−1uiu
>
i X−2uiu

>
i X−1

(1− τi)2
+

X−1uiu
>
i X−2

1− τi

+
X−2uiu

>
i X−1

1− τi

= X−2 + hi
X−1uiu

>
i X−1

(1− τi)2
+

X−1uiu
>
i X−2

1− τi

+
X−2uiu

>
i X−1

1− τi

Hence,

u>
j X−2

−i uj = u>
j X−2uj + hi

u>
j X−1uiu

>
i X−1uj

(1− τi)2
+

u>
j X−1uiu

>
i X−2uj

1− τi

+
u>

j X−2uiu
>
i X−1uj

1− τi

= hj + hi
τij ∙ τij

(1− τi)2
+

τijhij

1− τi

+
hijτij

1− τi

= hj +
hiτ

2
ij

(1− τi)2
+

2τijhij

1− τi
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4.5.2 GuessingA-Optimum ValueφA(V )

We remarked earlier that Algorithm 4.4 requires the knowledge of the optimum solution value

φA(V ). We can guess this value efficiently by performing a binary search. We explain the details

and the proof of the polynomial runtime of the search in this section.

Let α = tr
((∑n

i=1 viv
T
i

)−1
)

. Since we may pick at mostk copies of each vector, we have that

φA(V ) ≥ tr
((

k
∑n

i=1 viv
T
i

)−1
)

= 1
k
α. The fractional solutionxi = k

n
is feasible forA-REL(V ).

Hence,φA
f (V ) ≤ tr

((
k
n

∑n
i=1 viv

T
i

)−1
)

= n
k
α. Using the result in [ALSW17b], we get that

φA(V ) ≤ (1 + ε)φA
f (V ). Hence,φA(V ) ∈

[
1
k
α, n(1+ε)

k
α)
]
. Hence, given an instance, we first

computeα and then perform a binary search forφA(V ) in the interval[ 1
k
α, n(1+ε)

k
α].

Suppose the current range of the optimum is[`, u]. We guess OPT to be`+u
2

(use this as A-

optimumφA(V )) and run the modified local search algorithm. We claim that if it outputs a solution

with cost at most(1+ε) `+u
2

thenφA(V ) lies in the range[`, (1+ε) `+u
2

]. If it outputs a solution with

cost more than(1+ε) `+u
2

, thenφA(V ) lies in the range[ `+u
2

, u]. The first statement is trivially true.

The second statement is equivalent to the following: IfφA(V ) is less than`+u
2

, then the algorithm

outputs a solution of cost at most(1+ ε) `+u
2

. Proof of this fact follows exactly the same way as the

proof of Theorem 13 by substitutingφA(V ) with `+u
2

everywhere. The proof still follows, since

the only place we use the meaning of theφA(V ) value is in claiming that there exists a fractional

solution with valueφA(V ). BecauseφA(V ) is less than`+u
2

, this statement is true withφA(V )

replaced by`+u
2

.

We can guess the value ofφA(V ) upto a factor of1 + ε in log1+ε(n(1 + ε)) ≤ log(n(1+ε))
ε

iterations. This introduces an additional multiplicative factor of1 + ε in the approximation factor

in Theorem 4.3.3. Hence, we get an approximation factor of(1 + ε)(1 + ε) ≤ (1 + 3ε) and

polynomial number of iterations.
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4.5.3 Exampleof Instancesto A-DESIGN

In this section, we give more details deferred from Section 4.3.3, starting with the proof of Theorem

4.3.4.

Theorem 4.3.4.The cased = 2 is proven in Lemma 4.3.5, so letd ≥ 3. Let

v1 = [1;
1

N2
; 0; . . . ; 0], v2 = [1;−

1

N2
; 0; . . . ; 0], w1 = [N4; N ; 0; . . . ; 0],

w2 = [N4;−N ; 0; . . . ; 0], U =

{

ui :=
1

N3
ei : i = 3 . . . , d

}

,

and let{v1, v2, w1, w2} ∪ U be the input vectors toA-DESIGN. Let p = bk−d+2
2
c, q = dk−d+2

2
e.

Consider a solutionS which picksp and q copies ofv1 and v2, and one copy ofui for each

i = 3, . . . , d. We claim thatS is locally optimal.

Consider a swap of elementsS ′ = S \{s}∪{s′} wheres′ 6= s. If s ∈ U , thenS ′ does not span

full dimension. Hence,s ∈ {v1, v2}. If s′ = ei ∈ U for somei, then the increase of eigenvalue

of S ′ in the ith axis reduces the objective byΘ(N3). However, by Claim 7, removing a vectors

will increase the objective byΩ(N 4) . Finally, if s′ /∈ U , then the swap appears within the first

two dimension, so the calculation that a swap increases the objective is identical to the cased = 2,

proven in Lemma 4.3.5. Therefore,S is locally optimal.

We now observe that the objective given byS is Θ(N 4), dominated by eigenvalues of eigen-

vectors spanning the first two dimension. However, consider a solutionS∗ which picksp andq

copies ofw1 andw2, and one copy ofui for eachi = 3, . . . , d. The objective ofS∗ contributed

by eigenvalues of eigenvectors lying in the first two dimension isO(N2) (Claim 7), so the total

objective ofS∗ is Θ(N3), which is arbitrarily smaller thanΘ(N4), the objective ofS.

We also remark that the exmple of input vectors toA-DESIGN given in this section also shows

that A-DESIGN objectiveS → tr
((∑

i∈S viv
>
i

)−1
)

is not supermodular, making the analysis

of algorithms in submodular optimization unapplicable. A set functiong : 2U → R is called
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submodular ifg(S ∪ {u}) − g(S) ≥ g(S ′ ∪ {u}) − g(S ′) for all S ⊆ S ′ ⊆ U andu ∈ U , andg

is supermodular if−g is submodular. In other words,g is supermodular if the marginal loss ofg

by addingu is decreasing as the setS is increasing by a partial ordering “⊆”. As a set increases,

the marginal loss of theA-DESIGN objective not only potentially increase, but also has no upper

bound.

Remark 4.5.7.For anyd ≥ 2, T > 0, there exist sets of vectorsS ( S ′ in Rd and a vectorw ∈ Rd

such that
tr
((∑

i∈S′ vv>
)−1
)
− tr

((∑
i∈S′ vv> + ww>

)−1
)

tr
((∑

i∈S vv>
)−1
)
− tr

((∑
i∈S vv> + ww>

)−1
) > T

Proof. We first assumed = 2. Use the same definitions of vectors from Lemma 4.3.5 and set

S = {v1, v2} , S ′ = {v1, v2, w1} andw = w2. By Claim 7,

tr





(
∑

i∈S

vv>

)−1


− tr





(
∑

i∈S

vv> + ww>

)−1


 = O(N)

and

tr





(
∑

i∈S′

vv>

)−1


− tr





(
∑

i∈S′

vv> + ww>

)−1


 ≥ tr





(
∑

i∈S′

vv>

)−1




− tr
((

w1w
>
1 + w2w

>
2

)−1
)

= Θ(N4),

so the proof is done becauseN tends to infinity. For the cased ≥ 3, we may pad zeroes to all

vectors in the above example and add a unit vector toS, S ′ to each of otherd− 2 dimensions.
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4.6 Approximate Local Search forD-DESIGN

While Theorem 4.2.1 proves a guarantee for every local optimum, it is not clear at all whether

the local optimum solution can be obtained efficiently. Here we give a approximate local search

algorithm that only makes improvements when they result in substantial reduction in the objective.

We show that this algorithm is polynomial time as well results in essentially the same guarantee as

Theorem 4.2.1.

Algorithm 4.6 Approximate Local search algorithm forD-DESIGN

Input: V = v1, . . . , vn ∈ Rd, d ≤ k ∈ n, parameterδ > 0.
Let I be any (multi)-subset of[1, n] of sizek such thatX =

∑
i∈I viv

>
i is non-singular matrix.

While∃i ∈ I, j ∈ [1, n] such thatdet
(
X − viv

>
i + vjv

>
j

)
> (1 + δ) ∙ det(X):

X = X − viv
>
i + vjv

>
j

I = I \ {i} ∪ {j}
Return(I,X)

Recall thatφD
f denote the be the common optimum value of (D-REL) and its dual (D-REL-

DUAL ). I? denote the indices of the vector in the optimal solution andφD = det
(∑

i∈I? viv
>
i

) 1
d

be its objective. We haveφD
f ≥ log φD. We have the following result about Algorithm 4.6.

Theorem 4.6.1.LetX be the solution returned by Algorithm 4.6. Then,

det(X) ≥ e−kδ

(
k − d + 1

k

)d

ed∙φD
f

and therefore,

det(X)
1
d ≥ e−

kδ
d

k − d + 1

k
∙ φD.

Moreover, the running time of the algorithm is polynomial inn, d, k, 1
δ

and the size of the input.

Proof of the theorem is analogous to the proof of Theorem 4.2.1. Let(I,X) be the returned

solution of the algorithm. We also letVI denote thed × |I| matrix whose columns arevi for

eachi ∈ I. Observe thatX = VIV
>
I andX is invertible sincedet(X) > 0 at the beginning of
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the iteration and it only increases in later iterations. We letτi = v>
i X−1vi for any 1 ≤ i ≤ n.

Observe that ifi ∈ I, thenτi is the leverage score of rowvi with respect to the matrixV >
I . We also

τij = v>
i X−1vj for any1 ≤ i, j ≤ n. As in Theorem 4.2.1, we have some properties regardingτi

andhi.

Lemma 4.6.2.We have the following.

1. For anyi ∈ I, we haveτi ≤ 1. Moreover, for anyi ∈ I, τi = 1 if and only ifX − viv
>
i is

singular.

2. We have
∑

i∈I τi = d.

3. For any1 ≤ j ≤ n, we have
∑

i∈I τijτji = τj.

4. For any1 ≤ i, j ≤ n, we haveτij = τji andτij ≤
√

τiτj.

Proof of the lemma is identical to that of Lemma 4.2.2. Next, we show an upper bound onτj

for the approximate local optimal solution.

Lemma 4.6.3.For anyj ∈ [1, n],

τj ≤
d + δk

k − d + 1
.

Before we prove the lemma, we complete the proof of Theorem 4.6.1.

Proof. [Theorem 4.6.1] We construct a feasible solution to the (D-REL-DUAL ) of the objective

value of at most1
d
log det(X) + log k

k−d+1
+ kδ

d
. This would imply that

O?
f ≤

1

d
log det(X) + log

k

k − d + 1
+

kδ

d

which proves the first part of the theorem. The second part follows sinceφD
f ≥ log φD.
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Let

Y = αX, μ = max
1≤j≤n

v>
j Y −1vj =

1

α
max
j∈[1,n]

v>
j X−1vj

whereα > 0 will be fixed later. Then,(Y, μ) is a feasible solution of (D-REL-DUAL ). Hence,

φD
f ≤

1

d
log det(αX) +

k

d
∙

1

α
max
j∈[1,n]

v>
j X−1vj − 1

≤ log α +
1

d
log det(X) +

k

dα
∙

d + kδ

k − d + 1
− 1 (Lemma 4.6.3)

Settingα = k
k−d+1

, we get

φD
f ≤ log

k

k − d + 1
+

1

d
log det(X) + 1 +

kδ

d
− 1 = log

k

k − d + 1
+

1

d
log det(X) +

kδ

d

asrequired.

Lemma 4.6.3.SinceX is a symmetric matrix,X−1 is also a symmetric matrix and thereforeτij =

τji for eachi, j. We first show that the approximate local optimality condition implies the following

claim:

Claim 19. For anyi ∈ I andj ∈ [n], we have

τj − τiτj + τijτji ≤ δ + τi. (4.15)

Proof. Let i ∈ I, j ∈ [n] andX−i = X − viv
>
i . First, consider the case whenX−i is singular.

From Lemma 4.2.2, we have thatτi = 1, τij = τji ≤
√

τiτj ≤ 1. Hence,

τj − τiτj + τijτji ≤ τj − τj + 1 = τi ≤ δ + τi
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Now consider the case whenX−i is non-singular. By local optimality ofI, we get that

det
(
X−i + vjv

>
j

)
≤ (1 + δ) det

(
X−i + viv

>
i

)
(4.16)

Claim 20. For any invertible matrixA ∈ Rd×d andv ∈ Rd,

det(A + vv>) = det(A)(1 + v>A−1v)

Hence, local optimality ofI implies that for anyi ∈ I, j ∈ [n],

det(X−i)(1 + v>
j X−1

−i vj) ≤ (1 + δ) det(X−i)(1 + v>
i X−1

−i vi)

Dividing both sides bydet (X−i) , we get for eachi ∈ I andj ∈ [n], we have1 + v>
j X−1

−i vj ≤

(1 + δ)(1 + v>
i X−1

−i vi) or equivalently,

v>
j X−1

−i vj ≤ δ + (1 + δ)v>
i X−1

−i vi.

From the Sherman-Morrison Formula we obtain that for anyi ∈ I andj ∈ [n], we have

v>
j

(

X−1 +
X−1viv

>
i X−1

1− v>
i X−1vi

)

vj ≤ δ + (1 + δ)v>
i

(

X−1 +
X−1viv

>
i X−1

1− v>
i X−1vi

)

vi.

Now using the definition ofτi, τj andτij, we obtain that for anyi ∈ I and1 ≤ j ≤ n, we have

τj +
τjiτij

1− τi

≤ δ + (1 + δ)

(

τi +
τ 2
i

1− τi

)

.

Multiplying by 1 − τi, which is positive from Lemma 4.2.2, on both sides we obtain that for any
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i ∈ I and1 ≤ j ≤ n,

τj − τiτj + τijτji ≤ δ(1− τi) + (1 + δ)τi = δ + τi

thus finishing the proof of theclaim.

Now summing over the inequality in Claim 19 for alli ∈ I, we get

∑

i∈I

(τj − τiτj + τijτji) ≤
∑

i∈I

δ +
∑

i∈I

τi.

Applying Lemma 4.2.2, we obtain that

kτj − dτj + τj ≤ δk + d.

Rearranging, we obtain that

τj ≤
d + δk

k − d + 1

Runtime Analysis. One may obtain the worst-case runtime for local search for D-design as fol-

lows. LetL be the maximum number of the length of binary string that encodes the number in

each component across all input vectorsvi. Suppose we start with any solutionS with nonzero

determinantdet(VSV T
S ) =

∑
R⊆S,|R|=d det(VRV T

R ) (Cauchy-Binet), which can be done in poly-

nomial time by finding a set of linearly independent vectors. SinceVSV >
S is PSD,det(VSV T

S )

is nonnegative and hence must be strictly positive, and therefore at least one termdet(VRV T
R ) is

strictly positive. We now use the fact that for a square matrixA, the binary encoding length of

det(A) is at most twice of the encoding length of matrixA (the exact definition of encoding length
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and the proof are in Theorem 3.2 of [Sch98]). Since the length ofd × d matrix VRV T
R is at most

2Ld2 log d (by bounds of values from direct matrix multiplication), the length ofdet(VRV T
R ) is at

most4Ld2 log d. Hence, the value of the determinant is at least2−4Ld2 log d.

The optimum solutionS∗ of D-DESIGN attains the objective value
∑

R⊂S∗,|R|=d det(VRV T
R )

(Cauchy-Binet). Each termdet(VRV T
R ) again has length at most4Ld2 log d, and so is at most

24Ld2 log d. Therefore, the optimum is at most
(

k
d

)
∙ 24Ld2 log d ≤ kd24Ld2 log d. Hence, any solutionS

with nonzero determinant is akd28Ld2 log d-approximation. Each swap increases the objective by a

multiplicative factor1 + δ, so the algorithm takes at most

log1+δ(k
d28Ld2 log d) ≤

2

δ

(
d log k + 8Ld2 log d

)
= O

(
Ld2 log d + d log k

δ

)

swapping steps, where we use1
log(1+δ)

≤ 2
δ

for δ < 2. We can use matrix determinant lemma (for

rank-one update) to compute the new determinant objective rather than recomputing it in the next

iteration. The matrix determinant lemma computation takesO(d2) times, so one swapping steps

takesO(knd2) time by computing allkn potential pairs of swaps. Therefore, the local search in

total takesO
(

Lknd3 log d+knd2 log k
δ

)
arithmetic operations.

4.7 Approximate Local Search forA-DESIGN

Algorithm 4.7 Approximate Local search algorithm forA-DESIGN

Input: U = {u1, . . . , un} ⊆ Rd, d ≤ k ∈ N.
Let I be any (multi)-subset of[1, n] of sizek such thatX =

∑
i∈I viv

>
i is non-singular.

While∃i ∈ I, j ∈ [1, n] such thattr
(
(X − uiu

>
i + uju

>
j )−1

)
< (1− δ) tr(X−1):

X = X − uiu
>
i + uju

>
j

I = I \ {i} ∪ {j}
Return(I,X)

Recall that for any input vectorsV = {v1, . . . , vn}, the primal program isA-REL(V ) and the

dual program isA-REL-DUAL(V ). We index these convex program by input vectors as we aim
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to analyze their objectives when the input changes by the capping algorithm.φA
f (V ) denote the

(common) optimal value of objective values of the convex program with input vectors fromV . I?

denote the indices of the vectors in the optimal solution ofA-DESIGN with input vector setV and

let φA(V ) = tr
((∑

i∈I? viv
>
i

)−1
)

be its objective. Recall thatφA
f (V ) ≤ φA(V ).

Similar to the local search result forA-DESIGN of Theorem 4.3.2, we can prove the following

theorem:

Theorem 4.7.1.LetX be the matrix returned by Algorithm 4.7. If||ui||22 ≤ Δ for all i ∈ [n],

tr(X−1) ≤ φA
f (U)




(

1−
d− 2

k

)
1

1 + (k − d)δ
−

√
ΔφA

f (U)

k





−1

.

To prove Theorem 4.7.1, we can prove the following lemma instead of Lemma 4.5.3.

Lemma 4.7.2.For anyj ∈ [n],

hj

1 + τj

≤
β(1 + (k − d)δ)

k − d + 2

Instead of Theorem 4.3.3, Theorem 4.7.1 now leads to the following theorem:

Theorem 4.7.3.For input vectorsV = {v1, . . . , vn} and parameterk, let U = {u1, . . . , un} be

the set of vectors returned by the Capping Algorithm 4.2 with vector setV andΔ = d
ε2φA(V )

. Let

(I,X) be the solution returned by Algorithm 4.3 with vector setU and parameterk. If k ≥ 2d
ε4

,

δ ≤ εd
2k

, andε ≤ 0.001 then,

tr





(
∑

i∈I

viv
>
i

)−1


 ≤ (1 + 2ε)φA(V ).

Proof of the theorems and lemmas are identical to the corresponding theorems and lemmas

proved in Section 4.3. Hence, we avoid the tedious calculations in reproving these theorems.
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Runtime Analysis We claim that the running times of both capping and approximate local search

for A-DESIGN are polynomial inn, d, k, 1
δ

and the size of the input. We first analyze approximate

local search algorithm forA-DESIGN. DenoteL the biggest bit complexity across any entries of

any input vectorvi. We claim that the runtime complexity is identical to that ofD-DESIGN. The

analysis follows similarly to the runtime analysis ofD-DESIGN, and we analyze here in detail for

completeness.

We first want to bound the original objective and the optimum ink, d, L. By Cauchy-Binet,

Ed−1(VSV >
S ) =

∑

R⊆S:|R|=d−1

det(V T
R VR) and det(VSV >

S ) =
∑

R⊆S:|R|=d

det(V T
R VR)

Since the length ofV T
R VR for |R| = d − 1 is at most2Ld2 log d, we have that ifEd−1(VSV >

S ) is

strictly positive, thenEd−1(VSV >
S ) ≥ 2−4Ld2 log d ([Sch98]), for at least one termdet(V T

R VR) is

strictly positive. We also haveEd−1(VSV >
S ) ≤

(
k

d−1

)
∙ 24Ld2 log d for anyS of sizek. The same is

true fordet andR of sizek in place ofEd−1 andR of sized − 1. Therefore, an optimal setS∗

satisfies
Ed−1(VS∗V >

S∗)

det(VS∗V >
S∗)
≥

2−4Ld2 log d

(
k
d

)
∙ 24Ld2 log d

≥ k−d2−8Ld2 log d

and any initial setS with finite optimum satisfies

Ed−1(VSV >
S )

det(VSV >
S )
≤

(
k

d−1

)
∙ 24Ld2 log d

2−4Ld2 log d
≤ kd28Ld2 log d

Therefore, any initial solution to the local search algorithm with finite optimum is ak2d216Ld2 log d-

approximation. Hence, the local search algorithm takes at most

log1+δ(k
2d216Ld2 log d) ≤

2

δ

(
2d log k + 16Ld2 log d

)
= O

(
Ld2 log d + d log k

δ

)

swapping steps. Similar toD-DESIGN, each swapping step takesO(knd2) time by matrix deter-
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minant lemma, so the total runtime isO
(

Lknd3 log d+knd2 log k
δ

)
number of arithmetic operations.

We now show that capping algorithm terminates in polynomial time. Again, letL be the

maximum number of the length of binary string that encodes the number in each component across

all input vectorsvi. Then||vi||2 ≤
√

d ∙ 22L for all i’s. In each iteration, the capping algorithm

reduces the length of at least one vector by at least half, and hence byn log
√

d22L

Δ
iteration of

capping, all vectors have length at mostΔ. We show above thatφA(V ) ≤ kd28Ld2 log d which, by

Δ = d
ε2φA(V )

of the capping algorithm, gives

n log

√
d22L

Δ
≤ n

(

2L + log d + d log k + 8Ld2 log d + log
ε2

d

)

= O
(
Ld2 log d + d log k

)

where we use thatε is a small constant. Each step takesO(nd) to computen norms ofd-

dimensional vectors, andO(d2) for computing ad × d matrix and multiplying it with a vector

for scaling operation. Therefore, the runtime of capping algorithm isO (Lnd3 log d + nd2 log k).

Finally, we note that the input to local search algorithm are not the same as original input, which

we assume with bit complexityL on each entry. However, by Lemma 4.3.1 which shows that the

objective of capped vectors and original vectors are at most constant factors within each other, the

gap between the initial objective (which is finite) and optimum changes by at most a constant factor,

and hence the complexity of number of swaps remains unchanged. The total runtime of modified

local search is thereforeO
(

Lknd3 log d+knd2 log k
δ

)
, dominated by the local search time complexity.

4.8 Greedy Algorithm for D-DESIGN

To prove Theorem 4.1.2, we again use the convex programming relaxation for theD-DESIGN

problem. Recall the relaxation (D-REL) and its dual (D-REL-DUAL ) shown in figure 2.2b.φD
f

denote the be the common optimum value of (D-REL) and its dual (D-REL-DUAL ). I? denote

the indices of the vector in the optimal solution and letφD = det
(∑

i∈I? viv
>
i

) 1
d be its objective.

Observe thatφD
f ≥ log φD. Now, Theorem 4.1.2 follows from the following theorem with an
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Algorithm 4.8 Greedy algorithm forD-DESIGN

Input: V = v1, . . . , vn ∈ Rd, d ≤ k ∈ N, S0 ⊂ [n].
X0 =

∑
j∈S0

vjv
>
j .

For i = 1 to k − |S0|:
ji = argmaxj∈[n] det(X + vjv

>
j )

Si = Si−1 ∪ {ji}, Xi = Xi−1 + vji
v>

ji

I = Sk−|S0|, X = Xk−|S0|

Return(I,X).

appropriate initialization of firstd vectors which will be specified later.

Theorem 4.8.1.For any set of vectorsv1, . . . , vn ∈ Rd, supposeS0 ⊂ [1, n] is a set of sized such

thatdet
(∑

i∈S0
viv

>
i

) 1
d > d

k
κ ∙ φD for some1

e
≥ κ > 0 andk ≥ d

ε

(
log 1

ε
+ log log 1

κ

)
. Let (I,X)

be the solution returned by Algorithm 4.8. Then,

det(X) ≥ (1− 5ε)φD

Before we prove Theorem 4.8.1, we state and prove the following theorem, which better con-

veys main ideas of the proof.

Theorem 4.8.2.For any set of vectorsv1, . . . , vn ∈ Rd andk ≥
d log 1

ε

ε
, supposeS0 ⊂ [1, n] is a set

of sized such thatdet
(∑

i∈S0
viv

>
i

) 1
d > d

k
κ ∙ φD for some1 > κ > 0. Lets = max{d log log 1

κ
, 0}

and(I,X) be the solution returned by pickingk − d + s vectors greedily. Then,

det(X) ≥ (1− 4ε)φD

Theorem 4.8.2 gives a bi-criteria approximation where we pick small numbers of extra vectors

than the budgetk while obtaining near-optimal solution. Theses vectors are required to improve

the initial approximationd
k
κ to a ratiod

k
independent ofn or κ.

Theorem 4.8.2.To prove this theorem, we show the following two lemmas. First lemma shows the

increase in the solution value in each greedy step.
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Lemma 4.8.3.For t ∈ [0, k − |S0| − 1], det(Xt+1) ≥ det(Xt)
(
1 + d

k
eφD

f

(det(Xt))1/d

)

Next lemma shows that this recursion leads to the desired bound in the theorem.

Lemma 4.8.4.Let` ≥ 0. Letz0, . . . , zk−` be such that fort ∈ [0, k−`−1], zt+1 ≥ zt

(
1 + d

kzt

)1/d

.

Then,

1. If z0 < d
k
, then for anys ≥ d log log dz0

k
, we have

zs ≥
d

ek

2. If z0 ≥ d
ek

, then we have

zk−` ≥
k − d− `

k
−

2d

k
log

k

d

Proof of Theorem 4.8.2 follows from these two lemmas by definingzt = eφD
f

(det(Xt))1/d in the

bound in Lemma 4.8.3. Lemma 4.8.4 implies that for any initialκ approximation withd initial

vectors to theD design problem ofk vectors,s = d log log 1
κ

vectors is enough to guarantee

d
ek

-approximation. Then, the second bound of Lemma 4.8.4 applies for the rest of the greedy

algorithm. We now prove these two lemmas.

Lemma 4.8.3.By definition,det(Xt+1) = maxj∈[n] det(Xt + vjv
>
j ). By Lemma 4.4.2,det(Xt +

vjv
>
j ) = det(Xt)(1 + v>

j X−1
t vj). Hence,

det(Xt+1) = det(Xt)

(

1 + max
j∈[n]

v>
j X−1

t vj

)

(4.17)

Next, we lower boundmaxj∈[n] v
>
j X−1

t vj by constructing a feasible solution to the (D-REL-

DUAL ). Let

Y = αXt, μ = max
j∈[n]

v>
j Y −1vj =

1

α
max
j∈[n]

v>
j X−1

t vj
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whereα will be fixed later. Then,(Y, μ) is a feasible solution of (D-REL-DUAL ). Hence,

φD
f ≤

1

d
log det(αXt) +

k

d
∙

1

α
max
j∈[n]

v>
j X−1

t vj − 1

which implies
dα

k

(

φD
f + 1− log α−

1

d
log det(Xt)

)

≤ max
j∈[n]

v>
j X−1

t vj

Setting,α = eφD
f

det(Xt)1/d , we get

max
j∈[n]

v>
j X−1

t vj ≥
d

k

eφD
f

det(Xt)1/d

(

φD
f + 1− log

eφD
f

det(Xt)1/d
−

1

d
log det(Xt)

)

=
d

k

eφD
f

det(Xt)1/d

Substituting the bounds in equation (4.17), we get

det(Xt+1) ≥ det(Xt)

(

1 +
d

k

eφD
f

(det(Xt))1/d

)

.

This finishes the proof of Lemma 4.8.3.

Lemma 4.8.4.We first prove the first bound. The recursion implies thatzt+1

zt
≥
(

d
kzt

) 1
d
, which is

equivalent to

log zt+1 ≥
1

d
log

d

k
+

d− 1

d
log zt (4.18)

Defineat := log d
k
− log zt. If au ≤ 0 for anyu ≤ s, then we are done becausezs ≥ zu ≥ d

k
. Else,

we can rearrange terms to obtain

at+1 ≤

(

1−
1

d

)

at (4.19)
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Hence, we have

as ≤

(

1−
1

d

)s

a0

≤ e−
s
d a0 ≤ e−

s
d log

dz0

k

≤ 1

where the last inequality follows froms ≥ log log dz0

k
. Therefore,log d

k
− log zs = as ≤ 1, giving

the desired bound.

To prove the second bound, the recursion is equivalent to

log
zt+1

zt

≥
1

d
log

(

1 +
d

kzt

)

(4.20)

It is clear thatzt is an increasing sequence int, hence d
kzt
≤ d

kz0
= e. We uselog(1+x) ≥ x

e
for

0 ≤ x ≤ e (by concavity oflog x) to lower bound the right-hand-side of (4.20) above inequality

to obtain

log
zt+1

zt

≥
1

d
∙

d

ekzt

=
1

ekzt

Thus, by usingex ≥ 1 + x, we havezt+1

zt
≥ e

1
ekzt ≥ 1 + 1

ekzt
, which implies

zt+1 ≥ zt +
1

ek

Therefore, we obtainzt ≥ t
ek

for all t ≥ 0.

Next, we apply the boundlog(1+x) ≥ x− x2

2
= x

(
1− x

2

)
whenever0 ≤ x on the right-hand-

side of (4.20) to obtain

log
zt+1

zt

≥
1

d

d

kzt

(

1−
d

2kzt

)

≥
1

kzt

∙

(

1−
2d

t

)
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where the last inequality comes fromzt ≥ t
ek

. Thus, applyingex ≥ 1 + x, we havezt+1

zt
≥

1 + 1
kzt
∙
(
1− 2d

t

)
, which implies

zt+1 ≥ zt +
1

k
−

2d

tk
(4.21)

Summing (4.21) fromt = d to t = k − `− 1 gives

zk−` ≥ zd +
k − d− `− 1

k
−

2d

k

(
1

d
+

1

d + 1
+ . . . +

1

k − `− 1

)

≥
k − d− `

k
−

2d

k
log

k

d

asdesired.

Now we prove Theorem 4.8.2. We first picks vectors greedily to guarantee thatzs ≥ d
ek

. (If

z0 > d
ek

, thens = 0.) Substituting̀ = d andk ≥
d log 1

ε

ε
in Lemma 4.8.4 gives

zk−` ≥ 1−
d

k

(

2 + 2 log
k

d

)

≥ 1−
2ε

log 1
ε

(

1 + log
1

ε
+ log log

1

ε

)

≥ 1− 4ε

where the second inequality follows from1
x

(1 + log x) being decreasing function onx ≥ 1, and

the last inequality is by1 + x ≤ ex with x = log 1
ε
.

We are now ready to prove the main theorem.

Theorem 4.8.1.The proof is identical to the proof of Theorem 4.8.2 except that, after usings =

log log 1
κ

vectors to obtaind
ek

-approximation, we only takek− d− s greedy steps instead ofk− d

greedy steps. Hence, we set` = d + s to the second bound of Lemma 4.8.4 to obtain

zk−` ≥
k − 2d− s

k
−

2d

k
log

k

d
= 1−

d

k

(

2 + 2 log
k

d

)

−
s

k
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We have1− d
k

(
2 + 2 log k

d

)
≥ 1−4ε identical to the proof of Theorem 4.8.2. Byk ≥ d

ε
log log 1

κ
=

s
ε
, we haves

k
≤ ε, completing theproof.

We finally note on combinatorial algorithms for setting initial solution of sized. One may

use volume sampling algorithms to achieven
k
-approximation to optimal objective in for pickingd

vectors [AB13]. Alternatively, we can perform local search on initiald vectors to obtaind(1 + δ)-

approximation in time polynomial in1
δ
, as shown in Section 4.6. Since we know that the relaxation

gaps ofA- andD- optimal design are at most k
k−d+1

, we can bound the optimum values of design

problems between pickingd and k vectors to be at mostk multiplicative factor apart [AB13,

NST19]. The approximation ratios of two algorithms are hencen anddk(1 + δ), respectively. We

formalize this argument and the result with locally optimal initial set as the following statement,

which proves Theorem 4.1.2.

Corollary 4.8.5. Greedy algorithm initialized by a local optimal set of sized returns a(1 + 5ε)-

approximation wheneverk ≥ d
ε
(log 1

ε
+ log log d + 1).

We first argue the ratio of optimumD-DESIGN values when the size of the set isd andk.

DenoteφD(d), φD(k) = φD the optimumD-DESIGN objectivedet
(∑

i∈S viv
>
i

) 1
d on sized, k,

respectively. DenoteφD
f (d), φD

f (k) = φD
f the common optimum value of (D-REL) and its dual

(D-REL-DUAL ) for size constraints ofd, k respectively.

Claim 21. We have

φD(k) ≤ kφD(d)

Proof. Because (D-REL) is a relaxation ofD-DESIGN (up to log scale), we have

exp φD
f (k) ≥ φD(k), exp φD

f (d) ≥ φD(d)

We may scale any optimal solution of (D-REL) with size k to sized by applyingxi := d
k
xi
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coordinate-wise. Therefore, we have

φD
f (d) ≥ φD

f (k) + log
d

k

Finally, we know that the integrality gap of (D-REL) is at most k
k−d+1

. This follows from the

approximation result of local search algorithm which compares the objective value of returned set

to the objective to the convex relaxation. (This exact bound of the gap also follows from previous

work on proportional volume sampling [NST19].) We apply this gap for size budgetd to obtain

exp φD
f (d) ≤ dφD(d)

Therefore, we have

φD(k) ≤ exp φD
f (k) ≤

k

d
exp φD

f (d) ≤ kφD(d) (4.22)

asdesired.

Corollary 4.8.5. Theorem 4.1.1 implies that a local search solution satisfiesd-approximation when

budget size isd. Hence, by Claim 21, a local solution isdk-approximation compared toD-DESIGN

with a size budget ofk.

We now apply Theorem 4.8.1: it is sufficient to show that

k ≥
d

ε

(

log
1

ε
+ log log

1

κ

)

(4.23)

for κ = 1
d2 , so the result follows.

4.9 Greedy Algorithm for A-DESIGN

In this section, we prove Theorem 4.1.4. As remarked in the case of local search algorithm, we

need to modify the instance to cap the length of the vectors in the case of greedy algorithm as well.
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This is done by Algorithm 4.2. As shown in Lemma 4.3.1, the value of any feasible solution only

increases after capping and the value of the convex programming relaxation increases by a small

factor if k is large.

We now show that the greedy algorithm run on these vectors returns a near optimal solution.

For any input vectorsV = {v1, . . . , vn}, the primal program isA-REL(V ) and the dual program is

Algorithm 4.9 Greedy algorithm forA-DESIGN

Input: U = u1, . . . , un ∈ Rd, d ≤ k ∈ N, S0 ⊂ [n].
X0 =

∑
j∈S0

uju
>
j .

For i = 1 to k − |S0|:

ji = argminj∈[n] tr
((

X + uju
>
j

)−1
)

Si = Si−1 ∪ {ji}, Xi = Xi−1 + uji
u>

ji

I = Sk−|S0|, X = Xk−|S0|.
Return(I,X).

A-REL-DUAL(V ). φA
f (V ) denotes the (common) optimal value of objective values of the convex

program with input vectors fromV . I? denotes the indices of the vectors in the optimal solution of

A-DESIGN with input vector setV andφA(V ) = tr
((∑

i∈I? viv
>
i

)−1
)

be its objective. We show

the following theorem about Algorithm 4.9 in terms of capping lengthΔ.

Theorem 4.9.1.Let ||ui||22 ≤ Δ, S0 ⊆ [n] of sizer ≥ d such thattr
((∑

i∈S0
uiu

>
i

)−1
)
≤

κ∙φA(U) for someκ ≥ 1, andΛ =

√
ΔφA

f (U)

k
. Let(I,X) be the solution returned by Algorithm 4.9.

Then we have

tr(X−1) ≤

(

1−
d + r

k
− 2Λ log

k max{Λκ, 1}
d

)−1

φA(U)

Similar to the analysis of local search forA-DESIGN, capping vector length is necessary to

obtain theoretical guarantee. We will optimize over the lengthΔ later in Theorem 4.9.4.

Theorem 4.9.1.To prove the theorem, we show the following two lemmas:
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Lemma 4.9.2.For anyt ∈ [0, k−|S0|], letzt = tr(X−1
t )/φA

f (U). Then, for anyt ∈ [0, k−|S0|−1],

zt+1 ≤ zt





1−

zt

k

(

1 + zt

√
ΔφA

f (U)

k

)







Lemma 4.9.3.LetΛ ≥ 0 and` ≥ 0. Supposezt+1 ≤ zt

(
1− zt

k(1+ztΛ)

)
for all t ≥ 0, then

1. If z0 > 1
Λ

, then for anys ≥ 2Λk log(Λz0), we have

zs ≤
1

Λ

2. If z0 ≤ 1
Λ

, we have

zk−` ≤

(

1−
d + `

k
− 2Λ log

k

d

)−1

Lemma 4.9.2.By definition,

tr(X−1
t+1) = min

j∈[n]
tr
((

Xt + uju
>
j

)−1
)

.

By Sherman-Morrison formula,

tr(X−1
t+1) = tr(X−1

t )−max
j∈[n]

u>
j X−2

t uj

1 + u>
j X−1

t uj

Note thatu>
j X−1

t uj = 〈uj, X
−1
t uj〉. By Cauchy-Schwarz inequality,u>

j X−1
t uj is at most

||uj||2||X
−1
t uj||2 = ||uj||2

√
u>

j X−2
t uj. Since,||uj||22 ≤ Δ, we getu>

j X−1
t uj ≤

√
Δ ∙ u>

j X−2
t uj.

Hence,

tr(X−1
t+1) ≤ tr(X−1

t )−max
j∈[n]

u>
j X−2

t uj

1 +
√

Δ ∙ u>
j X−2

t uj

(4.24)
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Next, we lower boundmaxj∈[n] u
>
j X−2

t uj by finding a feasible solution toA-REL-DUAL . Let,

Y = γX−2
t , λ = max

j∈[n]
u>

j Y uj = γ max
j∈[n]

u>
j X−2

t uj

whereγ > 0 will be fixed later. Then,(Y, λ) is a feasible solution toA-REL-DUAL(U). Hence,

φA
f (U) ≥ 2 tr

((
γX−2

t

)1/2
)
− kγ max

j∈[n]
u>

j X−2
t uj

max
j∈[n]

u>
j X−2

t uj ≥
1

kγ

(
2
√

γ tr(X−1
t )− φA

f (U)
)

Substitutingγ =
(

φA
f (U)

tr(X−1
t )

)2

, we get

max
j∈[n]

u>
j X−2

t uj ≥
tr(X−1

t )2

kφA
f (U)

.

As proved in Claim 8, x
1+c

√
x

is a monotonically increasing function forx ≥ 0 if c ≥ 0. Hence,

max
j∈[n]

u>
j X−2

t uj

1 +
√

Δ ∙ u>
j X−2

t uj

≥

tr(X−1
t )2

kφA
f (U)

1 +

√

Δ
tr(X−1

t )2

kφA
f (U)

Substitutingzt =
tr(X−1

t )

φA
f (U)

, we get

max
j∈[n]

u>
j X−2

t uj

1 +
√

Δ ∙ u>
j X−2

t uj

≥
tr(X−1

t )

k

zt

1 + zt

√
ΔφA

f (U)

k

.

Substituting this inequality in Equation (4.24), we get

tr(X−1
t+1) ≤ tr(X−1

t )





1−

zt

k

(

1 + zt

√
ΔφA

f (U)

k

)





 .
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Substitutingzt = tr(X−1
t )/φA

f (U) andzt+1 = tr(X−1
t+1)/φ

A
f (U), we get

zt+1 ≤ zt





1−

zt

k

(

1 + zt

√
ΔφA

f (U)

k

)





 .

This finishes the proof of Lemma 4.9.2.

Lemma 4.9.3.We first prove the first bound. Ifzt ≤ 1
Λ

for anyt < s, then we are done, so assume

ztΛ ≥ 1. The recursion then implies

zt+1 ≤ zt

(

1−
zt

k(2ztΛ)

)

= zt

(

1−
1

2kΛ

)

Therefore,

zs ≤ z0

(

1−
1

2kΛ

)s

≤ z0e
− 1

2Λ
s ≤ z0e

− log Λz0 =
1

Λ

as desired.

We now prove the second bound. Letat = 1
zt

. Then the recursionzt+1 ≤ zt

(
1− zt

k(1+ztΛ)

)

can be rewritten as
at+1

at

≥

(

1−
1

k (Λ + at)

)−1

(4.25)

Applying
(
1− 1

k(Λ+at)

)−1

≥ 1 + 1
k(Λ+at)

and rearranging terms, we obtain

at+1 ≥ at +
at

k(Λ + at)
= at +

1

k
−

Λ

k(Λ + at)
(4.26)

It is obvious from (4.25) thatat is an increasing sequence, and henceat ≥ a0 ≥ Λ for all t ≥ 0.
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So (4.26) implies

at+1 ≥ at +
1

k
−

Λ

k(2Λ)
= at +

1

2k
(4.27)

Therefore, we haveat ≥ t
2k

for all t ≥ 0.

Using this boundat ≥ t
2k

, the recursion (4.26) also implies

at+1 ≥ at +
1

k
−

Λ

k( t
2k

)
= at +

1

k
−

2Λ

t
(4.28)

Summing 4.28 fromt = d to t = k − `− 1 gives

ak−` ≥ ad +
k − d− `

k
− 2Λ

k−`−1∑

t=d

1

t

=
k − d− `

k
− 2Λ log

k

d

proving the desiredbound.

We now prove Theorem 4.9.1. The first bound of Lemma 4.9.3 shows that with initial approxi-

mationκ, we requires = max{0, 2Λk log(Λκ)} steps to ensure1
Λ

approximation ratio. After that,

we can pickk − r− s vectors. Hence, we apply the second bound of Lemma 4.9.3 with` = r + s

to get the approximation ratio ofX as

zk−` ≤

(

1−
d + r + s

k
− 2Λ log

k

d

)−1

=

(

1−
d + r

k
− 2Λ

(

log
k

d
+ max {log Λκ, 0}

))−1

=

(

1−
d + r

k
− 2Λ log

k max{Λκ, 1}
d

)−1

proving the desiredbound.

Next, we tuneΔ in Theorem 4.9.1 and use Lemma 4.3.1 to obtain the final bound, from which
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Theorem 4.1.4 will follow.

Theorem 4.9.4.For input vectorsV = {v1, . . . , vn} and parameterk ∈ N, let U = {u1, . . . , un}

be the set of vectors returned by the Capping Algorithm 4.2 with input vector setV andΔ = d
εφA(V )

.

Let S0 ⊆ [n] be an initial set of sizer ≥ d wheretr
((∑

i∈S0
uiu

>
i

)−1
)
≤ κ ∙ φA(U) for some

κ ≥ 1. Let(I,X) be the solution returned by Algorithm 4.9 with vector setU and parameterk. If

k ≥ r
ε
+

d(log2 κ+log2 1
ε )

ε3
andε ≤ 0.0001, then

tr





(
∑

i∈I

viv
>
i

)−1


 ≤ (1 + 6000ε)φA(V )

Proof. By Lemma 4.3.1, substitutingΔ, we have

φA
f (U) ≤

(

1 +
5000d

k

)
(
φA

f (V ) + 150εφA(V )
)

≤ (1 + 5500ε)φA(V ) (4.29)

where the last inequality follows fromφA(V ) ≥ φA
f (V ), k ≥ d

ε
. andε ≤ 0.0001. Thus, we have

Λ =

√
ΔφA

f (U)

k
=

√
dφA

f (U)

εkφA(V )
≤

√
d(1 + 5500ε)

εk
≤ 2

√
d

εk

Next, Theorem 4.9.1 implies that

tr(X−1) ≤

(

1−
d + r

k
− 2Λ log

k max{Λκ, 1}
d

)−1

φA(U) (4.30)
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Note that

2Λ log
k max{Λκ, 1}

d
≤ 2Λ log

kκ

d

≤ 4

√
d

εk
log

k

d
+ 4

√
d

εk
log κ

Since 1√
x

log x is a decreasing function onx ≥ 8, applyingk ≥
d log2 1

ε

ε3
, we have

√
d

εk
log

k

d
≤

ε

log 1
ε

(

3 log
1

ε
+ log log

1

ε
+ log 2

)

≤ 4ε

where the last inequality follows fromε ≤ 0.0001. Also, applyingk ≥
d log2 1

κ

ε3
, k ≥

d log2 1
ε

ε3
≥ d

ε
,

andk ≥ r
ε
, we have

√
d

εk
log κ ≤ ε,

d

k
≤ ε,

r

k
≤ ε

Hence, (4.30) implies that

tr(X−1) ≤ (1− 22ε)−1 φA(U) (4.31)

Combining (4.31) with Lemma 4.3.1 and (4.29) gives

tr





(
∑

i∈I

viv
>
i

)−1


 ≤ tr(X−1) ≤ (1− 22ε)−1 (1 + 5500ε)φA(V )

≤ (1 + 6000ε)φA(V )

where the last inequality follows fromε ≤ 0.0001.

We note an efficient combinatorial algorithm of volume sampling [AB13, DW17a] that gives

n
k
-approximation to theA-DESIGN problem of selectingd vectors (note that these randomized
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algorithms can be derandomized, e.g. by rejection sampling). Alternatively, from our result on

approximate local search algorithm forA-DESIGN in Section 4.7, we can also initialize withc ∙ d

vectors for an absolute constantc and perform local search algorithm to obtain1 + 0.0001 + δ

approximation in time polynomial in1
δ

for some smallδ. Similar to Claim 21, we can relate the

optimum ofA-DESIGN of size budgetd ≤ r ≤ k andk to be at most factor k
r−d+1

apart [AB13,

NST19]. Hence, the volume sampling on initial set of sized and local search on initial set of size

cd give approximation ratio ofn and k
cd−d+1

(1 + 0.0001 + δ) ≤ k
d
, respectively; that is,κ can be

set ton or k
d

in Theorem 4.9.4 and we adjustr accordingly. Using the local search on initialcd

vectors to set the value ofκ andr, we prove Theorem 4.1.4.

Proof of Theorem 4.1.4.Supposek ≥ C ∙ d
ε3

log2 1
ε

for some absolute constantC > 0 to be spec-

ified later andε ≤ 0.0001. By Theorem 4.9.4, it is sufficient to havek ≥ r
ε

+
d(log2 κ+log2 1

ε )
ε3

,

whereκ = k
d

andr = cd by initializing the greedy algorithm with an output from an approxi-

mate local search algorithm of sizecd for an absolute constantc. By checking the derivative of

f(k) := k − cd
ε
−

d(log2 k
d
+log2 1

ε )
ε3

, f(k) is increasing when2d log k
d
≤ kε3, which is true for a large

enoughC. Hence, we only need to showf(k) ≥ 0 for k = C ∙ d
ε3

log2 1
ε
. The conditionf(k) ≥ 0

is equivalent to

C log2 1

ε
≥ log2 C log2 1

ε

ε3
+ log2 1

ε
+ cε2 (4.32)
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It is clear thatlog2 1
ε
+ cε2 ≤ C

2
log2 1

ε
for C ≥ 3 + c. We also have

log2 C log2 1
ε

ε3
=

(

log C + 3 log
1

ε
+ 2 log log

1

ε

)2

≤

(

log C + 5 log
1

ε

)2

≤

(√
C

2
− 5 + 5 log

1

ε

)2

≤

(√
C

2
log

1

ε

)2

where we usex ≤ ex for x = log 1
ε
, log C ≤

√
C − 5 for a sufficiently largeC, andlog 1

ε
≥ 1 for

the three inequalities above, respectively. Hence, we finished the proof of (4.32).
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CHAPTER 5

MULTI-CRITERIA DIMENSIONALITY REDUCTION WITH APPLICATIONS TO

FAIRNESS

5.1 Introduction

Dimensionality reduction is the process of choosing a low-dimensional representation of a large,

high-dimensional data set. It is a core primitive for modern machine learning and is being used

in image processing, biomedical research, time series analysis, etc. Dimensionality reduction can

be used during the preprocessing of the data to reduce the computational burden as well as at the

final stages of data analysis to facilitate data summarization and data visualization [RSA99, IP91].

Among the most ubiquitous and effective of dimensionality reduction techniques in practice are

Principal Component Analysis (PCA) [Pea01, Jol86, Hot33], multidimensional scaling [Kru64],

Isomap [TDSL00], locally linear embedding [RS00], and t-SNE [MH08].

One of the major obstacles to dimensionality reduction tasks in practice is complex high-

dimensional data structures that lie on multiple different low-dimensional subspaces. For example,

Maaten and Hinton [MH08] address this issue for low-dimensional visualization of images of ob-

jects from diverse classes seen from various viewpoints, or Samadi et al. [Sam+18] study PCA

on human data when different groups in the data (e.g., high-educated vs low-educated or men vs

women) have an inherently different structure. Although these two contexts might seem unrelated,

our work presents a general framework that addresses both issues. In both setting, a single criteria

for the dimensionality reduction might not be sufficient to capture different structures in the data.

This motivates our study of multi-criteria dimensionality reduction.

As an illustration, consider applying PCA on a high dimensional data to do a visualization

analysis in low dimensions. Standard PCA aims to minimize the single criteria of average recon-
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struction error over the whole data. But the reconstruction error on different parts of data can be

widely different. In particular, [Sam+18] show that on real world data sets, PCA has more recon-

struction error on images of women vs images of men. A similar phenomenon is also noticed on

other data sets when groups are formed based on education. Unbalanced average reconstruction er-

ror or equivalently unbalanced variance could have implications of representational harms [Cra17]

in early stages of data analysis.

Multi-criteria dimensionality reduction. Multi-criteria dimensionality reduction could be used

as an umbrella term with specifications changing based on the applications and the metrics that the

machine learning researcher has in mind. Aiming for an output with a balanced error over differ-

ent subgroups seems to be a natural choice as reflected by minimizing the maximum of average

reconstruction errors studied by [Sam+18] and maximizing geometric mean of the variances of the

groups, which is the well-studied Nash social welfare (NSW) objective [KN79, NJ50]. Motivated

by these settings, the more general question that we would like to study is as following.

Question 1. How might one redefine dimensionality reduction to produce projections which opti-

mize different groups’ representation in a balanced way?

For simplicity of explanation, we first describe our framework for PCA, but the approach is

general and applies to a much wider class of dimensionality reduction techniques. Consider the

data points as rows of anm×n matrixA. For PCA, the objective is to find ann×d projection matrix

P that maximizes the Frobenius norm,‖AP‖2F (this is equivalent to minimizing the reconstruction

error). Suppose that the rows ofA belong to differentgroups, based on demographics or some

other semantically meaningful clustering. The definition of these groups need not be a partition;

each group could be defined as a different weighting of the data set (rather than a subset, which

is a 0/1 weighting). Multi-criteria dimensionality reduction can then be viewed as simultaneously

considering objectives on the different weightings ofA, i.e., Ai. One way to balance multiple

objectives is to find a projectionP that maximizes the minimum objective value over each of the
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groups (weightings):

max
P :P T P=Id

min
1≤i≤k

‖AiP‖
2
F = 〈AT

i Ai, PP T 〉. (FAIR-PCA)

(We note that our FAIR-PCA is different from one in [Sam+18], but equivalent by additive and

multiplicative scalings.) More generally, letPd denote the set of alln × d projection matricesP ,

i.e., matrices withd orthonormal columns. For each groupAi, we associate a functionfi : Pd → R

that denotes the group’s objective value for a particular projection. For anyg : Rk → R, we define

the(f, g)-multi-criteria dimensionality reduction problem as finding ad-dimensional projectionP

which optimizes

max
P∈Pd

g(f1(P ), f2(P ), . . . , fk(P )). (MULTI -CRITERIA-DIMENSION-REDUCTION)

In the above example of max-min Fair-PCA,g is simply themin function andfi(P ) = ‖AiP‖2 is

the total squared norm of the projection of vectors inAi. Other examples include: defining each

fi as the average squared norm of the projections rather than the total, or the marginal variance —

the difference in total squared norm when usingP rather than the best possible projection for that

group. One could also choose the product functiong(y1, . . . , yk) =
∏

i yi for the accumulating

functiong. This is also a natural choice, famously introduced in Nash’s solution to the bargaining

problem [NJ50, KN79]. This framework can also describe thepth power mean of the projections,

e.g.fi(P ) = ‖AiP‖2 andg(y1, . . . , yk) =
(∑

i∈[k] y
p/2
i

)1/p

.

The appropriate weighting ofk objectives often depends on the context and application. The

central motivating questions of this paper are the following:

�What is the complexity ofFAIR-PCA ?

� More generally, what is the complexity ofMULTI -CRITERIA-DIMENSION-REDUCTION ?

Framed another way, we ask whether these multi-criteria optimization problems force us to in-
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cur substantial computational cost compared to optimizingg overA alone. Samadi et al. [Sam+18]

introduced the problem of FAIR-PCA and showed how to use the natural semi-definite relaxation

to find a rank-(d + k − 1) approximation whose cost is at most that of the optimal rank-d approx-

imation. Fork = 2 groups, this is an increase of1 in the dimension (as opposed to the naïve

bound of2d, by taking the span of the optimald-dimensional subspaces for the two groups). The

computational complexity of finding the exact optimal solution to FAIR-PCA was left as an open

question.

5.1.1 Resultsand Techniques

Let us first focus on FAIR-PCA for ease of exposition. The problem can be reformulated as the

following mathematical program where we denotePP T by X. A natural approach to solving this

problem is to consider the SDP relaxation obtained by relaxing the rank constraint to a bound on

the trace.

Exact FAIR -PCA

max z

〈AT
i Ai, X〉 ≥ z i ∈ {1, . . . , k}

rank(X) ≤ d

0 � X � I

SDP Relaxation of FAIR -PCA

max z

〈AT
i Ai, X〉 ≥ z i ∈ {1, . . . , k}

tr(X) ≤ d

0 � X � I

Our first main result is that the SDP relaxation is exact when there aretwogroups. Thus finding

an extreme point of this SDP gives an exact algorithm for FAIR-PCA for two groups. Previously,

only approximation algorithms were known for this problem. This result also resolves the open

problem posed by Samadi et al. [Sam+18].
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Theorem 5.1.1.Any optimal extreme point solution to the SDP relaxation forFAIR-PCAwith two

groups has rank at mostd. Therefore,2-groupFAIR-PCA can be solved in polynomial time.

Given m datapoints partitioned intok ≤ n groups inn dimensions, the algorithm runs in

O(nm + n6.5) time. O(mnk) is from computingAT
i Ai andO(n6.5) is from solving an SDP over

n × n PSD matrices [BTN01]. Our results also hold for the MULTI -CRITERIA-DIMENSION-

REDUCTION wheng is monotone nondecreasing in any one coordinate and concave, and eachfi

is an affine function ofPP T (and thus a special case of a quadratic function inP ).

Theorem 5.1.2.There is a polynomial time algorithm for2-groupMULTI -CRITERIA-DIMENSION-

REDUCTION problem wheng is concave and monotone nondecreasing for at least one of its two

arguments, and eachfi is linear inPP T , i.e.,fi(P ) = 〈Bi, PP T 〉 for some matrixBi(A).

As indicated in the theorem, the core idea is that extreme-point solutions of the SDP in fact

have rankd, not just trace equal tod.

For k > 2, the SDP need not recover a rankd solution. In fact, the SDP may be inexact even

for k = 3 (see Section 5.7). Nonetheless, we show that we can bound the rank of a solution to the

SDP and obtain the following result. We state it for FAIR-PCA, though the same bound holds for

MULTI -CRITERIA-DIMENSION-REDUCTION under the same assumptions as in Theorem 5.1.1.

Note that this result generalizes Theorem 5.1.1.

Theorem 5.1.3.For any concaveg that is monotone nondecreasing in at least one of its ar-

guments, there exists a polynomial time algorithm forFAIR-PCA with k groups that returns a

d + b
√

2k + 1
4
− 3

2
c-dimensional embedding whose objective value is at least that of the optimal

d-dimensional embedding. Ifg is only concave, then the solution lies in at mostd + 1 dimensions.

This strictly improves and generalizes the bound ofd+k−1 for FAIR-PCA problem. Moreover,

if the dimensionality of the solution is a hard constraint, instead of toleratings = O(
√

k) extra

dimension in the solution, one may solve FAIR-PCA for target dimensiond − s to guarantee a
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solution of rank at mostd. Thus, we obtain an approximation algorithm for FAIR-PCA of factor

1− O(
√

k)
d

.

Theorem 5.1.4.Let A1, . . . , Ak be data sets ofk groups and supposes := b
√

2k + 1
4
− 3

2
c < d.

Then there exists a polynomial-time approximation algorithm of factor1 − s
d

= 1 − O(
√

k)
d

to

FAIR-PCA problem.

That is, the algorithm returns a projectP ∈ Pd of exactrankd with objective at least1− s
d

of

the optimal objective. More details on the approximation result are in Section 5.3. The runtime of

Theorems 5.1.2 and 5.1.3 depends on access to first order oracle tog and standard application of

the ellipsoid algorithm would takẽO(n2) oracle calls.

We now focus our attention to the marginal loss function. This measures the maximum over

the groups of the difference between the variance of a common solution for thek groups and an

optimal solution for an individual group (“the marginal cost of sharing a common subspace"). For

this problem, the above scaling method could substantially harm the objective value, since the

target function is nonlinear. MULTI -CRITERIA-DIMENSION-REDUCTION captures the marginal

loss functions by setting the utilityfi(P ) = ‖AiP‖2F − maxQ∈Pd
‖AiQ‖2F for each groupi and

g(f1, f2, . . . , fk) := min {f1, f2, . . . , fk}, giving an optimization problem

min
P∈Pd

max
i∈[k]

(

max
Q∈Pd

‖AiQ‖
2
F − ‖AiP‖

2
F

)

(5.1)

and the marginal loss objective is indeed the objective of the problem.

In Section 5.4, we develop a general rounding framework for SDPs with eigenvalue upper

bounds andk other linear constraints. This algorithm gives a solution of desired rank that violates

each constraint by a bounded amount. The precise statement is Theorem 5.1.8. It implies that for

172



FAIR-PCA with marginal loss as the objective the additive error is

Δ(A) := max
S⊆[m]

b
√

2|S|+1c∑

i=1

σi(AS)

whereAS = 1
|S|

∑
i∈S Ai.

It is natural to ask whether FAIR-PCA is NP-hard to solve exactly. The following result implies

that it is, even for target dimensiond = 1.

Theorem 5.1.5.The max-minFAIR-PCA problem for target dimensiond = 1 is NP-hard when

the number of groupsk is part of the input.

This raises the question of the complexity for constantk ≥ 3 groups. Fork groups, we would

havek constraints, one for each group, plus the eigenvalue constraint and the trace constraint; now

the tractability of the problem is far from clear. In fact, as we show in Section 5.7, the SDP has an

integrality gap even fork = 3, d = 1. We therefore consider an approach beyond SDPs, to one that

involves solving non-convex problems. Thanks to the powerful algorithmic theory of quadratic

maps, developed by Grigoriev and Pasechnik [GP05], it is polynomial-time solvable to check

feasibility of a set of quadratic constraints for any fixedk. As we discuss next, their algorithm can

check for zeros of a function of a set ofk quadratic functions, and can be used to optimize the

function. Using this result, we show that ford = k = O(1), there is a polynomial-time algorithm

for rather general functionsg of the values of individual groups.

Theorem 5.1.6.Let the fairness objective beg : Rk → R whereg is a degreè polynomial in

some computable subring ofRk and eachfi is quadratic for1 ≤ i ≤ k. Then there is an algorithm

to solve the fair dimensionality reduction problem in time(`dn)O(k+d2).

By choosingg to be the product polynomial over the usual(×, +) ring or themin function

which is degreek in the(min, +) ring, this applies to the variants of FAIR-PCA discussed above

and various other problems.
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SDP extreme points. For k = 2, the underlying structural property we show is that extreme

point solutions of the SDP have rank exactlyd. First, fork = d = 1, this is the largest eigenvalue

problem, since the maximum obtained by a matrix of trace equal to1 can also be obtained by one

of the extreme points in the convex decomposition of this matrix. This extends to trace equal to

anyd, i.e., the optimal solution must be given by the topk eigenvectors ofAT A. Second, without

the eigenvalue bound, for any SDP withk constraints, there is an upper bound on the rank of any

extreme point, ofO(
√

k), a seminal result of Pataki [Pat98] (see also Barvinok [Bar95]). However,

we cannot apply this directly as we have the eigenvalue upper bound constraint. The complication

here is that we have to take into account the constraintX � I without increasing the rank.

Theorem 5.1.7.LetC andA1, . . . , Am ben×n real matrices,d ≤ n, andb1, . . . bm ∈ R. Suppose

the semi-definite programSDP(I):

min〈C,X〉 subject to (5.2)

〈Ai, X〉 Ci bi ∀ 1 ≤ i ≤ m (5.3)

tr(X) ≤ d (5.4)

0 � X � In (5.5)

whereCi ∈ {≤,≥, =}, has a nonempty feasible set. Then, all extreme optimal solutionsX∗ to

SDP(I) have rank at mostr∗ := d+b
√

2m + 9
4
− 3

2
c. Moreover, given a feasible optimal solution,

an extreme optimal solution can be found in polynomial time.

To prove the theorem, we extend Pataki [Pat98]’s characterization of rank of SDP extreme

points with minimal loss in the rank. We show that the constraints0 � X � I can be interpreted

as a generalization of restricting variables to lie between0 and1 in the case of linear programming

relaxations. From a technical perspective, our results give new insights into structural properties of

extreme points of semi-definite programs and more general convex programs. Since the result of
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[Pat98] has been studied from perspective of fast algorithms [BVB16, BM03, BM05] and applied

in community detection and phase synchronization Bandeira, Boumal, and Voroninski [BBV16],

we expect our extension of the result to have further applications in many of these areas.

SDP iterative rounding. Using Theorem 5.1.7, we extend the iterative rounding framework for

linear programs (see [LRS11] and references therein) to semi-definite programs, where the0, 1

constraints are generalized to eigenvalue bounds. The algorithm has a remarkably similar flavor.

In each iteration, we fix the subspaces spanned by eigenvectors with0 and1 eigenvalues, and argue

that one of the constraints can be dropped while bounding the total violation in the constraint over

the course of the algorithm. While this applies directly to the FAIR-PCA problem, in fact is a

general statement for SDPs, which we give below.

Let A = {A1, . . . , Am} be a collection ofn × n matrices. For any setS ⊆ {1, . . . ,m}, let

σi(S) theith largest singular of the average of matrices1
|S|

∑
i∈S Ai. We let

Δ(A) := max
S⊆[m]

b
√

2|S|+1c∑

i=1

σi(S).

Theorem 5.1.8.Let C be an × n matrix andA = {A1, . . . , Am} be a collection ofn × n real

matrices,d ≤ n, andb1, . . . bm ∈ R. Suppose the semi-definite programSDP:

min〈C,X〉 subject to

〈Ai, X〉 ≥ bi ∀ 1 ≤ i ≤ m

tr(X) ≤ d

0 � X � In

has a nonempty feasible set and letX∗ denote an optimal solution. The AlgorithmITERATIVE-
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SDP(see Figure 5.1) returns a matrix̃X such that

1. rank ofX̃ is at mostd,

2. 〈C, X̃〉 ≤ 〈C,X∗〉, and

3. 〈Ai, X̃〉 ≥ bi −Δ(A) for each1 ≤ i ≤ m.

The time complexity of Theorems 5.1.7 and 5.1.8 is analyzed in Sections 5.2 and 5.4. Both

algorithms introduce the rounding procedures that do not contribute significant computational cost;

rather, solving the SDPis the bottleneck for running time both in theory and practice.

5.1.2 Related Work

As mentioned earlier, Pataki [Pat98] (see also Barvinok [Bar95]) showed low rank solutions to

semi-definite programs with small number of affine constraints can be obtained efficiently. Re-

stricting a feasible region of certain SDPs relaxations with low-rank constraints has been shown to

avoid spurious local optima [BBV16] and reduce the runtime due to known heuristics and analysis

[BM03, BM05, BVB16]. We also remark that methods based on Johnson-Lindenstrauss lemma

can also be applied to obtain bi-criteria results for FAIR-PCA problem. For example, So, Ye, and

Zhang [SYZ08] give algorithms that give low rank solutions for SDPs with affine constraints with-

out the upper bound on eigenvalues. Here we have focused on single criteria setting, with violation

either in the number of dimensions or the objective but not both. We also remark that extreme point

solutions to linear programming have played an important role in design of approximation algo-

rithms [LRS11] and our result add to the comparatively small, but growing, number of applications

for utilizing extreme points of semi-definite programs.

A closely related area, especially to MULTI -CRITERIA-DIMENSION-REDUCTION problem,

is multi-objective optimization which has a vast literature. We refer the reader to Deb [Deb14]

and references therein. We also remark that properties of extreme point solutions of linear pro-

grams [RG96, GRSZ14] have also been utilized to obtain approximation algorithms to multi-
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objective problems. For semi-definite programming based methods, the closest works are on si-

multaneous max-cut [BKS15, Bha+18] that utilize sum of squares hierarchy to obtain improved

approximation algorithms.

The applications of multi-criteria dimensionality reduction in fairness are closely related to

studies on representational bias in machine learning [Cra17, Nob18, Bol+16] and fair resource

allocation in game theory [WVZX10, FB04]. There have been various mathematical formula-

tions studied for representational bias in ML [CKLV17, Cel+18, Sam+18, KAM19, KSAM19]

among which our model covers unbalanced reconstruction error in PCA suggested by Samadi et

al. [Sam+18]. From the game theory literature, our model covers Nash social welfare objective

[KN79, NJ50] and others [KS+75, Kal77].

5.2 Low-Rank Solutions of MULTI -CRITERIA -DIMENSION -REDUCTION

In this section, we show that all extreme solutions of SDP relaxation of MULTI -CRITERIA-DIMENSION-

REDUCTION have low rank, proving Theorem 5.1.1-5.1.3. Before we state the results, we make

following assumptions. In this section, we letg : Rk → R be a concave function which is mono-

tonic in at least one coordinate, and mildly assume thatg can be accessed with a polynomial-time

subgradient oracle and is polynomially bounded by its input. We are explicitly given functions

f1, f2, . . . , fk which are affine inPP T , i.e. we are given realn × n matricesB1, . . . , Bk and

constantsα1, α2, . . . , αk ∈ R andfi(P ) =
〈
Bi, PP T

〉
+ αi.

We assumeg to beG-Lipschitz. For functionsf1, . . . , fk, g that areL1, . . . , Lk, G-Lipschitz,

we define anε-optimal solution to(f, g)-MULTI -CRITERIA-DIMENSION-REDUCTION problem

as a projection matrixX ∈ Rn×n, 0 � X � In of rank d whose objective value is at most

Gε
(∑k

i=1 L2
i

)1/2

from the optimum. In the context where an optimization problem has affine

constraintsFi(X) ≤ bi whereFi is Li Lipschitz, we also defineε-solution as a projection matrix

X ∈ Rn×n, 0 � X � In of rankd that violatesith affine constraints by at mostεLi. Note that the

feasible region of the problem is implicitly bounded by the constraintX � In.
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In this section, the algorithm may involve solving an optimization under a matrix linear in-

equality, which may not give an answer representable in finite bits of computation. However, we

give algorithms that return anε-close solution whose running time depends polynomially onlog 1
ε

for anyε > 0. This is standard for computational tractability in convex optimization (see, for ex-

ample, in [BTN01]). Therefore, for ease of exposition, we omit the computational error dependent

on this ε to obtain anε-feasible andε-optimal solution, and define polynomial running time as

polynomial inn, k andlog 1
ε
.

We first prove Theorem 5.1.7 below. To prove Theorem 5.1.1-5.1.3, we first show that extreme

point solutions in semi-definite cone under affine constraints andX � I have low rank. The state-

ment builds on a result of [Pat98]. We then apply our result to MULTI -CRITERIA-DIMENSION-

REDUCTION problem, which contains the FAIR-PCA problem. Finally, we show that existence of

low-rank solution leads to an approximation algorithm to FAIR-PCA problem.

Proof of Theorem 5.1.7: Let X∗ be an extreme point optimal solution toSDP(I). Suppose rank

of X∗, sayr, is more thanr∗. Then we show a contradiction to the fact thatX∗ is extreme. Let

0 ≤ l ≤ r of the eigenvalues ofX∗ be equal to one. Ifl ≥ d, then we havel = r = d since

tr(X) ≤ d and we are done. Thus we assume thatl ≤ d − 1. In that case, there exist matrices

Q1 ∈ Rn×r−l, Q2 ∈ Rn×l and a symmetric matrixΛ ∈ R(r−l)×(r−l) such that

X∗ =

(

Q1 Q2

)





Λ 0

0 Il






(

Q1 Q2

)>

= Q1ΛQ>
1 + Q2Q

T
2

where0 ≺ Λ ≺ Ir−l, QT
1 Q1 = Ir−l, QT

2 Q2 = Il, and that the columns ofQ1 andQ2 are orthogonal,

i.e. Q =

(

Q1 Q2

)

has orthonormal columns. Now, we have

〈Ai, X
∗〉 = 〈Ai, Q1ΛQ>

1 + Q2Q
>
2 〉 = 〈Q>

1 AiQ1, Λ〉+ 〈Ai, Q2Q
>
2 〉

andtr(X∗) = 〈Q>
1 Q1, Λ〉+ tr(Q2Q

>
2 ) so that〈Ai, X

∗〉 andtr(X∗) are linear inΛ.

178



Observe the set ofs× s symmetric matrices forms a vector space of dimensions(s+1)
2

with the

above inner product where we consider the matrices as long vectors. Ifm + 1 < (r−l)(r−l+1)
2

then

there exists a(r − l) × (r − l)-symmetric matrixΔ 6= 0 such that〈Q>
1 AiQ1, Δ〉 = 0 for each

1 ≤ i ≤ m and〈Q>
1 Q1, Δ〉 = 0.

But then we claim thatQ1(Λ ± δΔ)Q>
1 + Q2Q

T
2 is feasible for smallδ > 0, which implies a

contradiction toX∗ being extreme. Indeed, it satisfies all the linear constraints by construction of

Δ. Thus it remains to check the eigenvalues of the newly constructed matrix. Observe that

Q1(Λ± δΔ)Q>
1 + Q2Q

T
2 = Q






Λ± δΔ 0

0 Il




Q>

with orthonormalQ. Thus it is enough to consider the eigenvalues of






Λ± δΔ 0

0 Il




 .

Observe that eigenvalues of the above matrix are exactlyl ones and eigenvalues ofΛ ± δΔ.

Since eigenvalues ofΛ are bounded away from0 and1, one can find smallδ such that the eigen-

value ofΛ± δΔ are bounded away from0 and1 as well, so we are done. Therefore, we must have

m + 1 ≥ (r−l)(r−l+1)
2

which impliesr − l ≤ −1
2

+
√

2m + 9
4
. By l ≤ d− 1, we haver ≤ r∗.

For the algorithmic version, given feasiblēX, we iteratively reducer − l by at least one until

m + 1 ≥ (r−l)(r−l+1)
2

. While m + 1 < (r−l)(r−l+1)
2

, we obtainΔ by using Gaussian elimination.

Now we want to find the correct value of±δ so thatΛ′ = Λ ± δΔ takes one of the eigenvalues to

zero or one. First, determine the sign of〈C, Δ〉 to find the correct sign to moveΛ that keeps the

objective non-increasing, say it is in the positive direction. Since the set of feasibleX is convex

and bounded, the rayf(t) = Q1(Λ + tΔ)Q>
1 + Q2Q

>
2 , t ≥ 0 intersects the boundary of feasible

region at a uniquet′ > 0. Perform binary search for the correct value oft′ and setδ = t′ up to

the desired accuracy. Since〈Q>
1 AiQ1, Δ〉 = 0 for each1 ≤ i ≤ m and 〈Q>

1 Q1, Δ〉 = 0, the

additional tight constraint from movingΛ′ ← Λ + δΔ to the boundary of feasible region must be
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an eigenvalue constraint0 � X � In, i.e., at least one additional eigenvalue is now at 0 or 1, as

desired. We apply eigenvalue decomposition toΛ′ and updateQ1 accordingly, and repeat.

The algorithm involves at mostn rounds of reducingr − l, each of which involves Gaussian

elimination and several iterations (from binary search) of0 � X � In which can be done by

eigenvalue value decomposition. Gaussian elimination and eigenvalue decomposition can be done

in O(n3) time, and therefore the total runtime of SDP rounding isÕ(n4) which is polynomial. �

In practice, one may initially reduce the rank of given feasibleX̄ using an LP rounding (in

O(n3.5) time) introduced in [Sam+18] so that the number of rounds of reducingr − l is further

bounded byk − 1. The runtime complexity is thenO(n3.5) + Õ(kn3).

The next corollary is obtained from the boundr − l ≤ −1
2

+
√

2m + 9
4

in the proof of Theo-

rem 5.1.7.

Corollary 5.2.1. The number of fractional eigenvalues in any extreme point solutionX to SDP(I)

is bounded by
√

2m + 9
4
− 1

2
≤ b
√

2m + 1c.

We are now ready to state the main result of this section that we can find a low-rank solution

for MULTI -CRITERIA-DIMENSION-REDUCTION . Recall thatPd is the set of alln × d pro-

jection matricesP , i.e., matrices withd orthonormal columns and the(f, g)-MULTI -CRITERIA-

DIMENSION-REDUCTION problem is to solve

max
P∈Pd

g(f1(P ), f2(P ), . . . , fk(P )) (5.6)

Theorem 5.2.2.There exists a polynomial-time algorithm to solve(f, g)-MULTI -CRITERIA-DIMENSION-

REDUCTION that returns a solution̂X of rank at mostr∗ := d + b
√

2k + 1
4
− 3

2
c whose objective

value is at least that of the optimald-dimensional embedding.
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If the assumption thatg is monotonic in at least one coordinate is dropped, Theorem 5.2.2 will

hold with r∗ by indexing constraints (5.11) inSDP(II) for all groups instead ofk − 1 groups.

Proof of Theorem 5.2.2: First, we write a relaxation of (5.6):

max
X∈Rn×n

g(〈B1, X〉+ α1, . . . , 〈Bk, X〉+ αk) subject to (5.7)

tr(X) ≤ d (5.8)

0 � X � In (5.9)

Sinceg(x) is concave inx ∈ Rk and 〈Bi, X〉 + αi is affine inX ∈ Rn×n, we have thatg as

a function ofX is also concave inX. By assumptions ong, and the fact that the feasible set

is convex and bounded, we can solve the convex program in polynomial time, e.g. by ellipsoid

method, to obtain a (possibly high-rank) optimal solutionX̄ ∈ Rn×n. (In the case thatfi is linear,

the relaxation is also an SDP and may be solved faster in theory and practice). By assumptions on

g, without loss of generality, we letg be nondecreasing in the first coordinate. To reduce the rank

of X̄, we consider anSDP(II):

max
X∈Rn×n

〈B1, X〉 subject to (5.10)

〈Bi, X〉 =
〈
Bi, X̄

〉
∀ 2 ≤ i ≤ k (5.11)

tr(X) ≤ d (5.12)

0 � X � In (5.13)

SDP(II) has a feasible solution̄X of objective〈B1, X〉 and note that there arek− 1 constraints in

(5.11). Hence, we can apply the algorithm in Theorem 5.1.7 withm = k − 1 to find an extreme

solutionX∗ of SDP(II) of rank at mostr∗. Sinceg is nondecreasing in〈B1, X〉, optimal solutions

to SDP(II) gives objective valueg at least the optimum of the relaxation and hence at least the

optimum of the original MULTI -CRITERIA-DIMENSION-REDUCTION problem. �
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Another way to state Theorem 5.2.2 is that the number of groups must reach(s+1)(s+2)
2

before

additionals dimensions in the solution matrixP is required to achieve the optimal objective value.

Fork = 2, no additional dimension in the solution is necessary to attain the optimum. We state this

fact as follows. In particular, it applies to FAIR-PCA with two groups, proving Theorem 5.1.1.

Corollary 5.2.3. The(f, g)-MULTI -CRITERIA-DIMENSION-REDUCTION problem on two groups

can be solved in polynomial time.

5.3 Approximation Algorithm for F AIR -PCA

Recall that we requires := b
√

2k + 1
4
− 3

2
c additional dimensions for the projection to achieve

the optimal objective. One way to ensure that the algorithm outputsd-dimensional projection is to

solve the problem in lower target dimensiond − s, then apply the rounding described in Section

5.2. The relationship of objectives between problems with target dimensiond− s andd is at most

d−s
d

factor apart for FAIR-PCA problem because the objective scales linearly withP , giving an

approximation guarantee of1− s
d
. Recall that givenA1, . . . , Ak, FAIR-PCA problem is to solve

max
P :P T P=Id

min
1≤i≤k

‖AiP‖
2
F = 〈AT

i Ai, PP T 〉

We state the approximation guarantee and the algorithm formally as follows.

Corollary 5.3.1. LetA1, . . . , Ak be data sets ofk groups and supposes := b
√

2k + 1
4
− 3

2
c < d.

Then there exists a polynomial-time approximation algorithm of factor1 − s
d

= 1 − O(
√

k)
d

to

FAIR-PCA problem.

Proof. We find an extreme solutionX∗ of the FAIR-PCA problem of finding a projection fromn

to d− s target dimensions. By Theorem 5.2.2, the rank ofX∗ is at mostd.

Denote OPTd, X∗
d the optimal value and an optimal solution to FAIR-PCA with target dimen-

siond. Note thatd−s
d

X∗
d is a feasible solution to FAIR-PCA relaxation on target dimensiond − s
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which is at leastd−s
d

OPTd because the objective scales linearly withX. Therefore, the optimal

FAIR-PCA relaxation of target dimensiond− s attains optimum at leastd−s
d

OPTd, giving (1− s
d
)-

approximationratio.

5.4 Iterative Rounding Framework with Applications to FAIR -PCA

In this section, we first prove Theorem 5.1.8.

We give an iterative rounding algorithm. The algorithm maintains three subspaces that are

mutually orthogonal. LetF0, F1, F denote matrices whose columns form an orthonormal basis

of these subspaces. We will also abuse notation and denote these matrices by sets of vectors in

their columns. We let the rank ofF0, F1 andF ber0, r1 andr, respectively. We will ensure that

r0 + r1 + r = n, i.e., vectors inF0, F1 andF spanRn.

We initializeF0 = F1 = ∅ andF = In. Over iterations, we increase the subspaces spanned

by columns ofF0 andF1 and decreaseF while maintaining pairwise orthogonality. The vectors

in columns ofF1 will be eigenvectors of our final solution with eigenvalue1. In each iteration,

we project the constraint matricesAi orthogonal toF1 andF0. We will then formulate a residual

SDP using columns ofF as a basis and thus the new constructed matrices will have sizer × r. To

readers familiar with the iterative rounding framework in linear programming, this generalizes the

method of fixing certain variables to0 or 1 and then formulating the residual problem. We also

maintain a subset of constraints indexed byS whereS is initialized to{1, . . . ,m}.

The algorithm is specified in Figure 5.1. In each iteration, we formulate the followingSDP(r)

with variablesX(r) which will be ar× r symmetric matrix. Recallr is the number of columns in
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F .

max 〈F T CF,X(r)〉

〈F T AiF,X(r)〉 ≥ bi − F T
1 AiF1 i ∈ S

tr(X) ≤ d− rank(F1)

0 � X(r) � Ir

1. InitializeF0, F1 to be empty matrices andF = In, S ← {1, . . . ,m}.

2. If theSDP is infeasible, declare infeasibility. Else,

3. WhileF is not the empty matrix.

(a) SolveSDP(r) to obtain extreme pointX∗(r) =
∑r

j=1 λjvjv
T
j whereλj are the

eigenvalues andvj ∈ Rr are the corresponding eigenvectors.

(b) For any eigenvectorv of X∗(r) with eigenvalue0, let F0 ← F0 ∪ {Fv}.

(c) For any eigenvectorv of X∗(r) with eigenvalue1, let F1 ← F1 ∪ {Fv}.

(d) Let Xf =
∑

j:0<λj<1 λjvjv
T
j . If there exists a constrainti ∈ S such that

〈F T AiF,Xf〉 < Δ(A), thenS ← S \ {i}.

(e) For every eigenvectorv of X∗(r) with eigenvalue not equal to0 or 1, consider the
vectorsFv and form a matrix with these columns and use it as the newF .

4. ReturnX̃ = F1F
T
1 .

Figure 5.1: Iterative Rounding Algorithm ITERATIVE-SDP.

It is easy to see that the semi-definite program remains feasible over all iterations ifSDP is

declared feasible in the first iteration. Indeed the solutionXf defined at the end of any iteration is

a feasible solution to the next iteration. We also need the following standard claim.

Claim 22. LetY be a positive semi-definite matrix such thatY � I with tr(Y ) ≤ l. LetB be real

184



matrix of the same size asY and letλi(B) denote theith largest singular value ofB. Then

〈B, Y 〉 ≤
l∑

i=1

λi(B).

The following result follows from Corollary 5.2.1 and Claim 22. Recall that

Δ(A) := max
S⊆[m]

b
√

2|S|+1c∑

i=1

σi(S).

whereσi(S) is thei’th largest singular value of1|S|
∑

i∈S Ai.

We letΔ denoteΔ(A) for the rest of the section.

Lemma 5.4.1. Consider any extreme point solutionX(r) of SDP(r) such thatrank(X(r)) >

tr(X(r)). LetX(r) =
∑r

j=1 λjvjv
T
j be its eigenvalue decomposition andXf =

∑
0<λj<1 λjvjv

T
j .

Then there exists a constrainti such that〈F T AiF,Xf 〉 < Δ.

Proof. Let l = |S|. From Corollary 5.2.1, it follows that number of fractional eigenvalues ofX(r)

is at most−1
2

+
√

2l + 9
4
≤
√

2l + 1. Observe thatl > 0 since rank(X(r)) > tr(X(r)). Thus

rank(Xf ) ≤
√

2l + 1. Moreover,0 � Xf � I, thus from Claim 22, we obtain that

〈
∑

j∈S

F T AjF,Xf

〉

≤
b
√

2l+1c∑

i=1

σi

(
∑

j∈S

F T AjF

)

≤
b
√

2l+1c∑

i=1

σi

(
∑

j∈S

Aj

)

≤ l ∙Δ

where the first inequality follows from Claim 22 and second inequality follows since the sum of

top l singular values reduces after projection. But then we obtain, by averaging, that there exists

j ∈ S such that

〈F T AjF,Xf 〉 <
1

l
∙ lΔ = Δ

asclaimed.
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Now we complete the proof of Theorem 5.1.8. Observe that the algorithm always maintains that

end of each iteration, trace ofXf plus the rank ofF1 is at mostd. Thus at the end of the algorithm,

the returned solution has rank at mostd. Next, consider the solutionX = F1F
T
1 + FXfF

T over

the course of the algorithm. Again, it is easy to see that the objective value is non-increasing over

the iterations. This follows sinceXf defined at the end of an iteration is a feasible solution to the

next iteration.

Now we argue the violation in any constrainti. While the constrainti remains in the SDP, the

solutionX = F1F
T
1 + FXfF

T satisfies

〈Ai, X〉 = 〈Ai, F1F
T
1 〉+ 〈Ai, FXfF

T 〉

=〈Ai, F1F
T
1 〉+ 〈F

T AiF,Xf〉 ≤ 〈Ai, F1F
T
1 〉+ bi − 〈Ai, F1F

T
1 〉 = bi.

where the inequality again follows sinceXf is feasible with the updated constraints.

When constrainti is removed it might be violated by a later solution. At this iteration,〈F T AiF,Xf 〉 ≤

Δ. Thus,〈Ai, F1F
T
1 〉 ≥ bi −Δ. In the final solution this bound can only go up asF1 might only

become larger. This completes the proof of theorem.

We now analyze the runtime of the algorithm which contains at mostk iterations. Each iteration

requires solving an SDP and eigenvector decompositions overr× r matrices, and recomputingF .

The SDP has runtimeO(r6.5) which exceeds eigenvector decomposition and computingXf , F

takesO(n2). However, the result in Section 5.2 shows thatr ≤
√

2k, and hence the total runtime

of iterative rounding isO(k4.25 + kn2).

Application to FAIR -PCA . For the FAIR-PCA problem, iterative rounding recovers a rank-d

solution whose variance goes down from the SDP solution by at mostΔ({AT
1 A1, . . . , A

T
k Ak}).

While this is no better than what we get by scaling (Corollary 5.3.1) for the max variance objective

function, when we consider the marginal loss, i.e., the difference between the variance of the
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commond-dimensional solution and the bestd-dimensional solution for each group, then iterative

rounding can be much better. The scaling solution guarantee relies on the max-variance being a

concave function and for the marginal loss, the loss for each group could go up proportional to the

largestmax variance (largest sum of topk singular values over the groups). With iterative rounding

applied to the SDP solution, the lossΔ is the sum of onlyO(
√

k) singular values of the average of

some subset of data matrices, so it can be better by as much as a factor of
√

k.

5.5 Polynomial Time Algorithm for Fixed Number of Groups

Functions of quadratic maps. We briefly summarize the approach of [GP05]. Letf1, . . . , fk :

Rn → R be real-valued quadratic functions inn variables. Letp : Rk → R be a polynomial of

degreè over some subring ofRk (e.g., the usual(×, +) or (+, min)) The problem is to find all

roots of the polynomialp(f1(x), f2(x), . . . , fk(x)), i.e., the set

Z = {x : p(f1(x), f2(x), . . . , fk(x)) = 0}.

First note that the set of solutions above is in general not finite and is some manifold and highly

non-convex. The key idea of Grigoriev and Paleshnik (see also Barvinok [Bar93] for a similar idea

applied to a special case) is to show that this set of solutions can be partitioned into a relatively

small number of connected components such that there is an into map from these components

to roots of a univariate polynomial of degree(`n)O(k); this therefore bounds the total number of

components. The proof of this mapping is based on an explicit decomposition of space with the

property that if a piece of the decomposition has a solution, it must be the solution of a linear

system. The number of possible such linear systems is bounded asnO(k), and these systems can be

enumerated efficiently.

The core idea of the decomposition starts with the following simple observation that relies

crucially on the maps being quadratic (and not of higher degree).
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Proposition 5.5.1.The partial derivatives of any degreed polynomialp of quadratic formsfi(x),

wherefi : Rn → R, is linear inx for any fixed value of{f1(x), . . . , fk(x)}.

To see this, supposeYj = fj(x) and write

∂p

∂xi

=
k∑

j=1

∂p(Y1, . . . , Yk)

∂Yj

∂Yj

∂xi

=
k∑

j=1

∂p(Y1, . . . , Yk)

∂Yj

∂fj(x)

∂xi

.

Now the derivatives offj are linear inxi asfj is quadratic, and so for any fixed values ofY1, . . . , Yk,

the expression is linear inx.

The next step is a nontrivial fact about connected components of analytic manifolds that holds

in much greater generality. Instead of all points that correspond to zeros ofp, we look at all

“critical" points of p defined as the set of pointsx for which the partial derivatives in all but the

first coordinate, i.e.,

Zc = {x :
∂p

∂xi

= 0, ∀2 ≤ i ≤ n}.

The theorem says thatZc will intersect every connected component ofZ [GVJ88].

Now the above two ideas can be combined as follows. We will cover all connected components

of Zc. To do this we consider, for each fixed value ofY1, . . . , Yk, the possible solutions to the linear

system obtained, alongside minimizingx1. The rank of this system is in general at leastn − k

after a small perturbation (while [GP05] uses a deterministic perturbation that takes some care, we

could also use a small random perturbation). So the number of possible solutions grows only as

exponential inO(k) (and notn), and can be effectively enumerated in time(`d)O(k). This last step

is highly nontrivial, and needs the argument that over the reals, zeros from distinct components

need only to be computed up to finite polynomial precision (as rationals) to keep them distinct.

Thus, the perturbed version still covers all components of the original version. In this enumeration,

we check for true solutions. The method actually works for any level set ofp, {x : p(x) = t}

and not just its zeros. With this, we can optimize overp as well. We conclude this section by
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paraphrasing the main theorem from [GP05].

Theorem 5.5.2.[GP05] Givenk quadratic mapsq1, . . . , qk : Rk → R and a polynomialp : Rk →

R over some computable subring ofR of degree at most̀, there is an algorithm to compute a set of

points satisfyingp(q1(x), . . . , qk(x)) = 0 that meets each connected component of the set of zeros

of p using at most(`n)O(k) operations with all intermediate representations bounded by(`n)O(k)

times the bit sizes of the coefficients ofp, q1, . . . , qk. The minimizer, maximizer or infimum of any

polynomialr(q1(x), . . . , qk(x)) of degree at most̀over the zeros ofp can also be computed in the

same complexity.

5.5.1 Proofof Theorem 5.1.6

We apply Theorem 5.5.2 and the corresponding algorithm as follows. Our variables will be the

entries of ann× d matrixP . The quadratic maps will befi(P ) plus additional maps forqii(P ) =

‖Pi‖2 − 1 andqij(P ) = P T
i Pj for columnsPi, Pj of P . The final polynomial is

p(f1, . . . , fk, q11, . . . , qdd) =
∑

i≤j

qij(P )2.

We will find the maximum of the polynomialr(f1, . . . fk) = g(f1, . . . , fk) over the set of zeros of

p using the algorithm of Theorem 5.5.2. Since the total number of variables isdn and the number

of quadratic maps isk + d(d + 1)/2, we get the claimed complexity ofO(`dn)O(k+d2) operations

and this times the input bit sizes as the bit complexity of the algorithm.
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5.6 Hardness

Theorem 5.6.1.TheFAIR-PCA problem:

max
z∈R,P∈Rn×d

z subject to (5.14)

〈
Bi, PP T

〉
≥ z , ∀i ∈ [k] (5.15)

P T P = Id (5.16)

for arbitrary n× n symmetric real PSD matricesB1, . . . , Bk is NP-hard ford = 1 andk = O(n).

Proof of Theorem 5.6.1: We reduce another NP-hard problem of MAX-CUT to the stated fair

PCA problem. In MAX-CUT, given a simple graphG = (V,E), we optimize

max
S⊆V

e(S, V \ S) (5.17)

over all subsetS of vertices. Here,e(S, V \ S) = | {eij ∈ E : i ∈ S, j ∈ V \ S} | is the size of the

cutS in G. As common NP-hard problems, the decision version of MAX-CUT:

∃?S ⊆ V : e(S, V \ S) ≥ b (5.18)

for an arbitraryb > 0 is also NP-hard. We may write MAX-CUT as an integer program as follows:

∃?v ∈ {−1, 1}V :
1

2

∑

ij∈E

(1− vivj) ≥ b (5.19)

Herevi represents whether a vertexi is in the setS or not:

vi =






1 i ∈ S

−1 i /∈ S

(5.20)
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and it can be easily verified that the objective represents the desired cut function.

We now show that this MAX-CUT integer feasibility problem can be formulated as an instance

of the fair PCA problem (5.14)-(5.16). In fact, it will be formulated as a feasibility version of the

fair PCA by checking if the optimalz of an instance is at leastb. We choosed = 1 andn = |V |

for this instance, and we writeP = [u1; . . . ; un] ∈ Rn. The rest of the proof is to show that

it is possible to construct constraints in the fair PCA form (5.15)-(5.16) to 1) enforce a discrete

condition onui to take only two values, behaving similarly asvi; and 2) check an objective value

of MAX-CUT.

The reasonui as written cannot behave exactly asvi is that constraint (5.16) requires
∑n

i=1 ui
2 =

1 but
∑n

i=1 vi
2 = n. Hence, we scale the variables in MAX-CUT problem by writingvi =

√
nui

and rearrange terms in (5.19) to obtain an equivalent formulation of MAX-CUT:

∃?u ∈

{

−
1
√

n
,

1
√

n

}n

: n
∑

ij∈E

−uiuj ≥ 2b− |E| (5.21)

We are now ready to give an explicit construction of{Bi}
k
i=1 to solve MAX-CUT formulation

(5.21). Letk = 2n + 1. For eachj = 1, . . . , n, define

B2j−1 = bn ∙ diag(ej), B2j =
bn

n− 1
∙ diag(1− ej)

whereej and1 denote vectors of lengthn with all zeroes except one at thejth coordinate, and

with all ones, respectively. It is clear thatB2j−1, B2j are PSD. Then for eachj = 1 . . . , n, the

constraints
〈
B2j−1, PP T

〉
≥ b and

〈
B2j , PP T

〉
≥ b are equivalent to

u2
j ≥

1

n
, and

∑

i 6=j

u2
j ≥

n− 1

n

respectively. Combining these two inequalities with
∑n

i=1 u2
i = 1 forces both inequalities to be
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equalities, implying thatuj ∈
{
− 1√

n
, 1√

n

}
for all j ∈ [n], as we aim.

Next, we set

B2n+1 =
bn

2b− |E|+ n2
∙ (nIn − AG)

whereAG = (I[ij ∈ E])i,j∈[n] is the adjacency matrix of the graphG. Since the matrixnIn − AG

is diagonally dominant and real symmetric,B2n+1 is PSD. We have that
〈
B2n+1, PP T

〉
≥ b is

equivalent to

bn

2b− |E|+ n2

(

n
n∑

i=1

u2
i −

∑

ij∈E

uiuj

)

≥ b

which, by
∑n

i=1 u2
i = 1, is further equivalent to

n
∑

ij∈E

−uiuj ≥ 2b− |E|

To summarize, we constructedB1, . . . , B2n+1 so that checking whether an objective of fair

PCA is at leastb is equivalent to checking whether a graphG has a cut of size at leastb, which is

NP-hard. �

5.7 Integrality Gap

We showed that FAIR-PCA for k = 2 groups can be solved up to optimality in polynomial time

using an SDP. Fork > 2, we used a different, non-convex approach to get a polytime algorithm

for any fixedk, d. Here we show that the SDP relaxation of FAIR-PCA has a gap even fork = 3

andd = 1.
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Lemma 5.7.1.TheFAIR-PCA SDP relaxation:

max z

〈Bi, X〉 ≥ z i ∈ {1, . . . , k}

tr(X) ≤ d

0 � X � I

for k = 3, d = 1, and arbitrary PSD{Bi}
k
i=1 contains a gap, i.e. the optimum value of the SDP

relaxation is different from one of exactFAIR-PCA problem.

Proof of Lemma 5.7.1: Let B1 =






2 1

1 1




 , B2 =






1 1

1 2




 , B3 =






2 −1

−1 2




. It can be

checked thatBi are PSD. The optimum of the relaxation is7/4 (given by the optimal solution

X =






1/2 1/8

1/8 1/2




). However, an optimal exact FAIR-PCA solution isX̂ =






16/17 4/17

4/17 1/17






which gives an optimum26/17 (one way to solve for optimum rank-1 solution̂X is by parameter-

izing X̂ = v(θ)v(θ)T for v(θ) = [cos θ; sin θ], θ ∈ [0, 2π)). �

5.8 Experiments

First, we note that experiments for FAIR-PCA with marginal loss objective for two groups were

done in Samadi et al. [Sam+18]. Their algorithm outputs optimal solutions with exact rank, de-

spite their weaker guarantee that the rank may be violated by at most 1. Hence, our result of

Theorem 5.1.1 is the missing mathematical explanation of their empirical finding. We extend their

experiments by solving MULTI -CRITERIA-DIMENSION-REDUCTION for more number of groups

and objectives as follows.

We perform experiments using the algorithm as outlined in Section 5.2 on the Default Credit
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data set [YL09] for different target dimensionsd. The data is partitioned intok = 4, 6 groups

by education and gender, and preprocessed to have mean zero and same variance over features.

Our algorithms are specified by two objectives for MULTI -CRITERIA-DIMENSION-REDUCTION

problem introduced earlier: the marginal loss function and Nash social welfare. The code is pub-

licly available athttps://github.com/SDPforAll/multiCriteriaDimReduction. Figure 5.2

shows the marginal loss by our algorithms compared to a standard PCA on the entire dataset. Our

algorithms significantly reduce "unfairness" in marginal loss of PCA that the standard PCA subtly

introduces.

Figure 5.2: Marginal loss function of standard PCA compared to our SDP-based algorithms on
Default Credit data. SDPRoundNSW and SDPRoundMar-Loss are two runs of the SDP-based
algorithms maximizing NSW and minimizing marginal loss. Left:k = 4 groups. Right:k = 6.

In the experiments, extreme point solutions from SDPs enjoy lower rank violation than our

worst-case guarantee. Indeed, while the guarantee is that the numbers of additional rank are at

mosts = 1, 2 for k = 4, 6, almost all SDP solutions haveexactrank, and in rare cases when the

solutions are not exact, the rank violation is only one. While our rank violation guarantee provably

cannot be improved in general (due to the integrality gap in Section 5.7), this opens a question

whether the guarantee is better for instances that arise in practice.

We also assess the performance of PCA with NSW objective, summarized in Figure 5.3. With

respect to NSW, standard PCA performs marginally worse (about 10%) compared to our algo-

rithms. It is worth noting from Figures 5.2 and 5.3 that our algorithms which try to optimize either

194



Figure 5.3: NSW objective of standard PCA compared to our SDP-based algorithms on Default
Credit data. SDPRoundNSW and SDPRoundMar-Loss are two runs of the SDP algorithms max-
imizing NSW objective and minimizing maximum marginal loss. Left:k = 4 groups. Right:
k = 6.

marginal loss function or NSW also perform well on the other fairness objective, making these

PCAs promising candidates for fairness application.

Same experiments were done on the Adult Income data [UC ]. Some categorial features are

preprocessed into integers vectors and some features and rows with missing values are discarded.

The final preprocessed data containsm = 32560 datapoints inn = 59 dimensions and is par-

titioned intok = 5 groups based on race. Figure 5.4 shows the performance of our SDP-based

algorithms compared to standard PCA on marginal loss and NSW objectives. Similar to the Credit

Data, optimizing for either marginal loss or NSW gives a PCA solution that also performs well in

another criterion and performs better than the standard PCA in both objectives. Almost all SDP

solutions are exact without any rank violation.

5.9 Scalability of the Algorithms

We found that the running time of solving SDP, which depends onn, is the bottleneck in all exper-

iments. Each run (for one value ofd) of the experiments is fast (< 0.5 seconds) on Default Credit

data (n = 23), whereas a run on Adult Income data (n = 59) takes between 10 and 15 seconds on

a single CPU. However, the runtime is not noticeably impacted by the numbers of data points and
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Figure 5.4: Marginal loss and NSW objective of standard PCA compared to our SDP-based algo-
rithms on Adult Income data. SDPRoundNSW and SDPRoundMar-Loss are two runs of the SDP
algorithms maximizing NSW objective and minimizing maximum marginal loss.

groups: largerm only increases the data preprocessing time to obtainn × n matrices and larger

k increases the number of constraints. SDP solver and rounding algorithms can handle moder-

ate number of affine constraints efficiently. This observation is as expected from the theoretical

analysis.

In this section, we show two heuristics for solving the SDP relaxation that runs significantly

faster in practice for large datasets: multiplicative weight update (MW) and Frank-Wolfe (FW).

We also discuss several findings and considerations for implementing our algorithms in this thesis

in practice. Both heuristics are publicly available at the following site:https://github.com/

SDPforAll/multiCriteriaDimReduction.

For the rest of this section, we assume that the utility of each group is simply variance,ui(X) =

〈Bi, X〉 whereBi = AT
i Ai, and thatg(z1, . . . , zk is a concave function ofz1, . . . , zk. Whenui is

other linear function, we can model such different utility function by modifyingg without changing

the concavitiy ofg. The SDP relaxation of MULTI -CRITERIA-DIMENSION-REDUCTION can be
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framed as SDP (5.22)-(5.25).

max
X∈Rn×n

g(z1, z2, . . . , zk) subject to (5.22)

zi = 〈Bi, X〉 ∀i = 1, 2, . . . , k (5.23)

tr(X) ≤ d (5.24)

0 � X � In (5.25)

5.9.1 Multiplicative Weight Update

One alternative method to solving (5.22)-(5.25) is multiplicative weight (MW) update [AHK12],

suggested by [Sam+18] for solving FAIR-PCA problem for two groups in order to improve run-

time. Though this prior works [AHK12, Sam+18] have theoretical guarantee, in practice the learn-

ing rate is tuned mre aggressively and the algorithm becomes a heuristic without any certificate

of optimality. We show the primal-dual derivation of Multiplicative Weight, which provides the

primal-dual gap to certify optimality.

We take the Lagragian dual on (5.23) to obtain that the optimum of the SDP equals to

max
X∈Rn×n

z∈Rn

tr(X)=d
0�X�I

inf
w∈Rk

g(z) +
k∑

i=1

wi (〈Bi, X〉 − zi)

By strong duality, we may swapmax andinf. After rearranging, the optimum of the SDP equals

inf
w∈Rk



 max
X∈Rn×n

tr(X)=d,0�X�I

k∑

i=1

wi 〈Bi, X〉 − min
z∈Rn

(
wT z − g(z)

)


 (5.26)
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The optimization

max
X∈Rn×n

tr(X)=d,0�X�I

k∑

i=1

wi 〈Bi, X〉 (5.27)

in (5.26) can easily be computed by standard PCA on weighted data
∑k

i=1 wi ∙ Bi projecting from

n to d dimensions. The term (5.27) is also convex inw, as it is a maximum of linear functions.

The termminz∈Rn

(
wT z − g(z)

)
is also known as concave conjugate ofg, which we will denote

by g∗(w). It is also known thatg∗(w) is a concave function (as it is a minimum of linear functions).

Hence, (5.26) is a convex optimization problem.

Solving the dual problem (5.26) depends of the form ofg∗(w). For each fairness criteria out-

lined in this paper, we summarize the form ofg∗(w) below.

Max-Min Variance (F AIR -PCA or MM-Var) : fairness objectiveg(z) = mini∈[k] zi gives

g∗(w) =






0 if w ≥ 0,
∑k

i=1 wi = 1

−∞ otherwise

Min-Max Loss (MM-Loss) : fairness objective (recall (5.1))g(z) = mini∈[k] zi − βi, whereβi =

maxQ∈Pd
‖AiQ‖2F is the best possible variance the groupi can have, gives

g∗(w) =






∑k
i=1 wiβi if w ≥ 0,

∑k
i=1 wi = 1

−∞ otherwise

More generally, the above form ofg∗(w) holds for any constantsβi’s. For example, this

calculation also captures Min-Max reconstruction error:g(X) = mini∈[k]−‖Ai − AiP‖2F =

mini∈[k] zi − tr(Bi) (recall thatX = PP T , Bi = AT
i Ai, andzi = 〈Bi, X〉).
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Nash Social Welfare (NSW) : fairness objectiveg(z) =
∑k

i=1 log(zi) gives

g∗(w) =






∑k
i=1(1 + log wi) if w > 0

−∞ otherwise

For fairness criteria in the "max-min" type, including MM-Var and MM-Loss, the dual reduces

to solving an optimization over a simplex with standard PCA as the function evaluation oracle.

Solving an optimization over a simplex can be done using mirror descent [NY83] with entropy

potential functionR(w) =
∑k

i=1 wi log wi. Such optimization is algorithmically identical to mul-

tiplicative weight update by [AHK12]; however, with primal-dual formulation, the dual solution

wi obtained in each step of mirror descent can be used to calculate the dual objective in (5.26), and

the optimumX in (5.27) is used to calculate the primal objective. The algorithm runs iteratively

until the duality gap satisfies a set threshold of choice.

5.9.2 Frank-Wolfe

It is worth noting that while the original optimization (5.22)-(5.25), which is in the form

max
X∈Rn×n

tr(X)=d,0�X�I

g(z(X))

where the utilityz is a function of projection matrixX is a nontrivial convex optimization, its

linear counterpart

max
X∈Rn×n

tr(X)=d,0�X�I

〈C,X〉

is solvable by standard PCA for any given matrixC. This motivates Frank-Wolfe (FW) algo-

rithm [FW56] which requires a linear oracle (solving the problem with a linear objective) in each
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step. The instantiation of FW to MULTI -CRITERIA-DIMENSION-REDUCTION is summarized in

Algorithm 5.1. We note the simpler linear oracle step in FW.

Algorithm 5.1 Frank-Wolfe Algorithm for Multi-Criteria Dimensionality Reduction

1: Input: B1, . . . , Bk ∈ Rn×n, d ≤ n, concaveg : Rk → R, learning rateηt, duality gap target
2: Output: A matrix X ∈ Rn×n that maximizesg(〈B1, X〉 , . . . , 〈Bk, X〉) subject totr(X) =

d, 0 � X � I
3: Initialize a feasibleX0 (we useX0 = d

n
In), t = 0

4: while duality gap exceeds the targetdo
5: Gt ← ∇Xg(Xt)
6: St ← V V T whereV is n-by-d matrix of topd eigenvectors ofGt . Linear oracle of FW
7: Xt+1 ← (1− ηt)xt + ηtSt

8: gt ← (St −Xt) ∙Gt . Duality gap
9: t← t + 1

10: OutputXt

One additional concern for implementing FW is obtaining gradient∇Xg(Xt). For some ob-

jectives such as NSW, this gradient can be calculated directly (some small error may need to be

added to stabalize the algorithm from exploding gradient when the variance is close to zero). Other

objectives, such as MM-Var and MM-Loss, on the other hand, is not differentiable. Though one

may try to still use FW, there is no theoretical guarantee in the literature for the convergence of

maximizing concave non-differentiable function, even when the feasible set is compact as in our

SDP relaxation.

5.9.3 Parameter Tuning

Multiplicative Weight Update. In practice for MM-Var and MM-Loss objectives, we tune the

learning rate of mirror descent much higher than in theory. For NSW, the dual is still a convex

optimization, so standard technique such as gradient descent can be used. We found that in practice,

however, the unboundedness of the feasible set and the exploding gradient whenwi’s are close to

zero pose a challenge to tune the algorithm to converge quickly.
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MW for Two Groups. For for MM-Var and MM-Loss objectives in two groups, the simplex is

a segment[0, 1]. The dual problem (5.26) reduces to

inf
w∈[0,1]



 max
X∈Rn×n

tr(X)=d,0�X�I

〈wB1 + (1− w)B2, X〉



 (5.28)

The function

h(w) := max
X∈Rn×n

tr(X)=d,0�X�I

〈wB1 + (1− w)B2, X〉

is a maximum of piecewise linear functions〈wB1 + (1− w)B2, X〉 in w, and hence is convex on

w. Instead of mirror descent, one can apply ternary search, a technique applicable to maximizing

convex function in one dimension in general, to solve (5.28). However, we claim that binary search

is also a valid choice.

First, becauseh(w) is convex, we may assume thath achieves minimum atw = w∗ and that all

subgradients∂h(w) ⊆ (−∞, 0] for all w < w∗ and∂h(w) ⊆ [0,∞) for all w > w∗. In the binary

search algorithm with current iteratew = wt, let

Xt ∈ argmax
X∈Rn×n

tr(X)=d,0�X�I

〈wtB1 + (1− wt)B2, X〉

be any solution of the optimization (which can be implemented easily by the standard PCA). Be-

cause a linear function〈wB1 + (1− w)B2, Xt〉 = 〈B2, Xt〉+w 〈B1 − B2, Xt〉 is a lower bound of

h(w) andh is convex, we have〈B1 − B2, Xt〉 ∈ ∂h(wt). Therefore, the binary search algorithm

can check the sign of〈B1 − B2, Xt〉 for a correct recursion. If〈B1 − B2, Xt〉 < 0, thenw∗ > wt;

if 〈B1 − B2, Xt〉 > 0, thenw∗ < wt; and the algorithm recurses in the left half or right half of the

current segment accordingly. If〈B1 − B2, Xt〉 = 0, thenwt is an optimum dual solution.

Frank-Wolfe. In practice, we experiment with more aggressive learning rate schedule and line

search algorithm. We found that FW converges quickly for NSW objective. However, FW does not
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converge for MM-Var and MM-Loss for any learning rate schedule, including the standardηt =

1
t+2

, and line search. There is modification of FW which has convergence guarantee for maximizing

concave non-differentiable functions. It is still an open question on this thesis whether some of

those, if any, can speed up the SDP relaxation of MULTI -CRITERIA-DIMENSION-REDUCTION

problem.

5.9.4 PracticalConsiderationsand Findings

Extreme Property of SDP Relaxation Solution. We note that a solution for SDP relaxation

(5.22)-(5.25) obtained by any of the algorithm (MW, FW, or SDP solver) are already extreme in

practice. This is because with probability 1 over random datasets, SDP is not degenerate, and

hence have a unique optimal solution. Since any linear optimization over a compact, convex set

must have an extreme optimal solution, this optimal solution is necessarily extreme. Therefore, in

practice, it is not necessary to apply the SDP rounding algorithm to the solution of SDP relaxation.

Rank Violation of Extreme SDP Relaxation Solution. While the rank violation bound of

b
√

2k + 1
4
− 3

2
c stated in Theorem 5.1.3 is tight (tight examples in [Pat98] can be applied in our

settings), the rank violation in our experiments up to 16 groups are mostly zero, i.e. we obtain an

exact solution. In rare cases where the solution is not exact, the rank violation is one. As a result,

in all experiments we begin by solving the SDP relaxation targeting dimensiond. If the solution

is exact, then we are done. Else, we target dimensiond − 1 and check if the solution is of rank at

mostd. If not, we continue to target dimensiond−2, d−3, . . . until the solution of SDP relaxation

has rank at mostd.

5.9.5 Runtime Results

We next perform MW and FW heuristics on a larger 1940 Colorado Census dataset [AA]. The

census data is preprocessed by one-hot encoding all discrete columns, ignoring columns with N/A,
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Table 5.1: Runtime of MW and FW for solving MULTI -CRITERIA-DIMENSION-REDUCTION on
different fairness objectives and numbers of dimensions in original data. Times reported are in
second(s).

OriginalDimensions MM-Var (byMW) MM-Loss (by MW) NSW (by FW)
n = 1000 77 65 15
n = 2000 585 589 69

and normalizing the data to mean zero and variance one. The preprocessed dataset contain 661k

datapoints and 7284 columns. Data are partitioned into 16 groups based on 2 genders and 8 edu-

cation levels. We solve the SDP relaxation of MULTI -CRITERIA-DIMENSION-REDUCTION with

MM-Var, MM-Loss, and NSW objectives until obtain a certificate of duality gap of no more than

0.1% (in the case of NSW, the product of variances, rather than the sum of logarithmic of variances,

are used to calculate this gap). The runtime results, in seconds, are in shown in Table 5.1. When

n increases, the bottleneck of the experiment became the standard PCA itself. Since speeding up

the standard PCA is out of the scope of this work, we capped the original dimension of data by

selecting the firstn dimensions out of 7284, so that the standard PCA can still be performed in a

reasonable amount of time.

Empirical Performance of MW. We found that MM-Var and MM-Loss objectives are solved

by efficiently by MW, whereas MW with gradient descent on the dual of NSW does not converge

quickly. For the Census Dataset, after parameter tuning, MW runs 100-200 iterations on both ob-

jectives. MW for both Credit and Income datasets (n = 23, 59) on 4-6 groups with both objectives

runs 10-20 iterations, giving a total runtime of is less than few seconds. Therefore, the price of

fairness in PCA for MW-Var and MM-Loss objectives is 100-200x runtime for large datasets, and

10-20x runtime for medium datasets, as compared to the standard PCA without fairness constraint.

Empirical Performance of FW. FW converges quickly for NSW objective, and does not con-

verge on MM-Var or MM-Loss objectives. FW terminates in 10-20 iterations for Census Data,

where the standard PCA oracle is the bottleneck in each iteration. Therefore, the price of fair-
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ness in PCA for NSW objective is 10-20x runtime compared to the standard PCA without fairness

constraint.

It is still an open question in this work to explore other heuristics to speed up solving MULTI -

CRITERIA-DIMENSION-REDUCTION in practice. It is still open if some (if any) modification of

FW may work well for non-differentiable objectives, or if a modification of MW will improve the

runtime further for any of the three objectives.
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CHAPTER 6

CONCLUSION

This thesis presents novel applications and extensions of convex relaxations for different contexts,

namely in diverse subset selection and multi-criteria dimensionality reduction which is motivated

from fairness in Principle Component Analysis (PCA). Convex relaxations we use include SDPs,

convex programs over polytopes, and convex programs with linear and nonlinear objective over

PSD feasible sets. Convex relaxations are intermediate steps of the problem that can efficiently give

fractional solutions. We present novel rounding scheme to obtain the original feasible solutions

from fractional ones, which includes novel sampling distribution, and show their efficiency. In

an application of SDPs, we show that extreme solutions of relaxationsthemselvesalready have

desired properties and no rounding is needed.

Moreover, analyzing convex relaxations and their dual problems gives lower bound on approx-

ibility of the problems. Integrality gaps of convex relaxations shows that better approximation

ratio from any rounding scheme does not exist, such as our tightness result forE-optimal design.

Dual problems of the relaxations can be used to approximate the value of optimum, allowing us

to prove the approximation guarantee, even without solving the dual problems. This technique,

calleddual-fitting, gives the best approximation results known forD-optimal design by a simple,

widely-used combinatorial algorithm.

Finally, solving the problems as convex programs allows us to consider wider range of tools

from convex optimization. We are able to scale algorithms for multi-criteria dimensionality reduc-

tion in practice using convex optimization methods, giving our work both theoretical performance

and empirical success.
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