
The Price of Fair PCA: One Extra Dimension
Samira Samadi, Uthaipon (Tao) Tantipongpipat, Jamie Morgenstern, Mohit Singh, and Santosh Vempala

Georgia Institute of Technology

Algorithm
• Standard PCA can be solved efficiently by Singular Value 

Decomposition (SVD)
• Simple SVD can’t solve fair PCA. But convex relaxation does extend.
• Convex relaxation finds 𝑋 ∈ ℝ𝑛×𝑛 which behaves as 𝑃𝑃𝑇 for 

orthonormal 𝑅 ∈ ℝ𝑛×𝑑. ത𝛼, ҧ𝛽 are constants 𝐴 𝐹
2 − 𝛼, 𝐵 𝐹

2 − 𝛽.

Provable Results
• 𝑋∗ has rank at most 𝑑 + 1. 
• The final projection achieves optimal fair loss to both groups by 

adding one more dimension for representation

Motivation
• Principle Component Analysis (PCA) is used in machine learning, 

natural sciences, and social sciences
• PCA can result in biased representation

• Reweighting samples from each group to be equal does not fix the bias
• Two PCAs for each group are not allowed for ethical and legal reasons

Experiments

Dataset Specifications

The runtime is from running our algorithm on standard single PC machine 

Male is consistently 
≈10% better than female

Problem Formulation
• 𝐷 = (𝐴, 𝐵) is the data of two groups with rows as entries
• 𝑃 is the orthonormal matrix for projection, needed to be found.
One may try to minimize the worst group’s error:

The above formulation ignores the inherent structures of each group. Let

𝛼 = 𝐴 − 𝐴𝑃𝐴 𝐹
2 , 𝛽 = 𝐵 − 𝐵𝑃𝐵 𝐹

2

for best projections 𝑃𝐴, 𝑃𝐵 separately of each group. 𝛼, 𝛽 capture
minimum error each group must have as a baseline. We optimize the
additional error

𝐷 − 𝐷𝑃 𝐹
2

(standard  PCA) max 𝐴 − 𝐴𝑃 𝐹
2 , 𝐵 − 𝐵𝑃 𝐹

2 (after)

max 𝐴 − 𝐴𝑃 𝐹
2 − 𝛼, 𝐵 − 𝐵𝑃 𝐹

2 − 𝛽 (Fair PCA)

No single projection works 
for both groups

The above objective inappropriately 
ignores the more structured group

Convex Relaxation for Fair PCA
Input: data 𝐴 ∈ ℝ𝑚1×𝑛, 𝐵 ∈ ℝ𝑚2×𝑛 in 𝑛 dimensions; 
target dimension 𝑑 ≤ 𝑛
Algorithm: solve the following semidefinite 
program (SDP)

min
𝑋∈ℝ𝑛×𝑛,𝑧∈ℝ

𝑧 subject to

𝑧 ≥
1

𝑚1
ത𝛼 − 𝐴𝑇𝐴, 𝑋

𝑧 ≥
1

𝑚2

ҧ𝛽 − 𝐵𝑇𝐵, 𝑋

Tr 𝑋 ≤ 𝑑, 0 ≼ 𝑋 ≼ 𝐼

෠𝑋 ∈ ℝ𝑛×𝑛

0 ≼ ෠𝑋 ≼ 𝐼, tr ෠𝑋 ≤ 𝑑

This SDP is efferently solvable 
by multiplicative weight 

update (MW) method

Problem: ෠𝑋 has correct trace 
but higher rank than 𝑑

Fair-PCA Solution Rank Reduction 
Input: data 𝐴 ∈ ℝ𝑚1×𝑛, 𝐵 ∈ ℝ𝑚2×𝑛 in 𝑛 dimensions; 

target dimension 𝑑 ≤ 𝑛; ෠𝑋 ∈ ℝ𝑛×𝑛, tr ෠𝑋 ≤ 𝑑

Algorithm: apply SVD to ෠𝑋

෠𝑋 =෍

𝑗=1

𝑛

෡𝜆𝑗 𝑢𝑗𝑢𝑗
𝑇

Solve the following linear program (LP)

min
𝜆∈ℝ𝑛,𝑧∈ℝ

𝑧 subject to

𝑧 ≥
1

𝑚1
ത𝛼 − σ𝑗=1

𝑛 𝜆𝑗 𝐴𝑇𝐴, 𝑢𝑗𝑢𝑗
𝑇

𝑧 ≥
1

𝑚2

ҧ𝛽 − σ𝑗=1
𝑛 𝜆𝑗 𝐵𝑇𝐵, 𝑢𝑗𝑢𝑗

𝑇

σ𝑗=1
𝑛 𝜆𝑗 ≤ 𝑑, 0 ≤ 𝜆𝑗 ≤ 1

Find one extreme solution 𝜆∗. Set 

𝑋∗ = σ𝑗=1
𝑛 𝜆𝑗

∗ 𝑢𝑗𝑢𝑗
𝑇

The total reconstruction errors hide the significant bias of 
additional reconstruction errors

By using Fair PCA, our algorithm corrects the hidden bias

Technique
• Theory of extreme point of polyhedron

Datasets Size Dimension Runtime

Faces Data (images) 13k 42 x 42

Credit Data 30k 21

Runtime
• The runtime of our algorithm is ≈10 times of applying SVD to the same 

problem. Much faster than predicted by theoretical analysis
• Very scalable to big data 

Code: https://github.com/samirasamadi/Fair-PCA
Webpage: https://sites.google.com/site/ssamadi/fair-pca-homepage

https://github.com/samirasamadi/Fair-PCA
https://sites.google.com/site/ssamadi/fair-pca-homepage

